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1 Steerable Self-Driving Data Visualization
2 Yuyu Luo , Xuedi Qin, Chengliang Chai , Nan Tang, Guoliang Li , and Wenbo Li

3 Abstract—In this work, we present a self-driving data visualization system, called DEEPEYE, that automatically generates and recommends

4 visualizations based on the idea of visualization by examples.Wepropose effective visualization recognition techniques to decide which

5 visualizations aremeaningful and visualization ranking techniques to rank the good visualizations. Furthermore, amain challenge of

6 automatic visualization system is that the usersmay bemisled by blindly suggesting visualizations without knowing the user’s intent. To this

7 end,we extend DEEPEYE to be easily steerable by allowing the user to use keyword search and providing click-based faceted navigation.

8 Empirical results, using real-life data and use cases, verify the power of our proposed system.

9 Index Terms—Data visualization, visualization recommendation, data exploration, keyword search, faceted navigation

Ç

10 1 INTRODUCTION

11 NOWADAYS, the ability to create good visualizations has
12 shifted from a nice-to-have skill to a must-have skill for
13 all data analysts [1]. The overwhelming choices of data visu-
14 alization tools (e.g., Tableau and Qlik) have allowed users to
15 create good visualizations, only if the users know their data
16 well. Ideally, the users need tools to automatically recom-
17 mend visualizations, so they can pick interesting ones.
18 Technically speaking, “interesting” charts can be defined
19 from three angles: (1)Deviation-based: a chart that is dramati-
20 cally different from the other charts (e.g., SeeDB [2]); (2) Simi-
21 larity-based: charts that show similar trends w.r.t. a given
22 chart (e.g., zenvisage [3]); and (3) Perception-based: visualiza-
23 tions that can tell compelling stories, from understanding
24 the data, without being comparedwith other references.

25 “If I had an hour to solve a problem I’d spend 55 minutes
26 thinking about the problem and 5 minutes thinking about
27 solutions.”
28 — Albert Einstein —

29 Although (1) “statistical deviation” and (2) “similarity”
30 can be quantified formally, our 55 minutes thought is to
31 study (3) because one fundamental request from users is to
32 find not only eye-catching but also informative charts.

33 Example 1. Consider a real-world table about flight delay
34 statistics of Chicago O’Hare International (Jan – Dec, 2015),
35 with an excerpt in Table 1 (https://www.bts.gov).
36 Naturally, the Bureau of Transportation Statistics wants
37 to visualize some valuable insights/stories of the data.

38Fig. 1 shows sample visualizations DEEPEYE considers for
39the entire table.

40i) Fig. 1a is a scatter plot, with x-axis: Departure Delay
41(min), y-axis: Arrival Delay (min), and plots grouped
42(and colored) by Carrier. It shows clearly the arrival
43delays w.r.t. departure delays for different carriers,
44e.g., the carrier OO is bad due to its long departure
45and arrival delays.
46ii) Fig. 1b is a stacked bar chart, with x-axis: Scheduled
47binned by month, y-axis: the number of Passengers in
48each month that is stacked by Destination City Name.
49It shows the number of passengers travelled to where
50and when.
51iii) Fig. 1c is a line chart, with x-axis: Scheduled binned
52by hour (i.e., the rows with the same hour are in the
53same bucket), y-axis: the average of Departure Delay
54(min). It shows when is likely to have more departure
55delays, e.g., it has long delays in late afternoon.
56iv) Fig. 1d is a line chart, with x-axis: Scheduled binned
57by date, y-axis: the average of Departure Delay (min).
58It shows the range of delays, no trend.
59Self-driving Data Visualization. From the user perspec-
60tive, users want data visualization systems to automati-
61cally discover compelling stories of the data, which is also
62known as visualization recommendation systems. Not sur-
63prisingly, there have been proposals for such systems [4],
64which focus on automatically discovering “interesting”
65visualizations from different criteria, such as relevance,
66surprise, non-obviousness, diversity and coverage. How-
67ever, as pointed out by [5], these systems may mislead the
68user, by generating visualizations that might be worse than
69nothing.
70Steerable Self-Driving Data Visualization. In order to better
71navigate the discovery process for finding compelling stories,
72users need to steer in a simple way, e.g., search visualizations
73by keyword or click-based faceted navigation. Building such
74a system faces several challenges.

75I) Capturing Human Perception. How to quantify that
76which visualization is good, better, or the best?
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of77 II) Large Search Space. Sometimes, visualizing a dataset

78 as-is cannot produce any interesting output. Appear-
79 ances can, however, be deceiving, when the stories
80 reside in the data after being transformed, such as
81 selections for columns, groups, and aggregations –
82 these create a huge search space.
83 III) Lack of Ground Truth. A benchmark or the ground
84 truth of a given dataset is often unavailable.
85 Intuitively, there are two ways of handling Challenge (I):
86 (A) Learning from examples–there are plenty of generic pri-
87 ors to showcase great visualizations. (B) Expert knowledge,
88 e.g., a bar chart with more than 50 bars is clearly bad. Chal-
89 lenge (II) is a typical database optimization problem that
90 techniques such as pruning and other optimizations can
91 play a role. For Challenge (III), fortunately, there are online
92 tables accompanied with well-designed charts, which are
93 treated as good charts. Besides, we also ask researchers to
94 manually annotate to create “ground truth”.
95 Contributions. We have built DEEPEYE and made it avail-
96 able as a web service (http://deepeye.tech), with the fol-
97 lowing notable contributions.
98 Self-driving Data Visualization. (1) Visualization Recognition:
99 We propose to capture human perception about the good-

100 ness of visualizations by learning from existing examples,
101 which differs from other visualization recommendation sys-
102 tems that are either deviation-based (e.g., SeeDB [2]), or simi-
103 larity-based (e.g., zenvisage [3]). (2) Visualization Ranking:
104 We propose effective ranking techniques to rank the visual-
105 izations, including learning-to-rank, partial order, and diver-
106 sity. (3) Visualization Selection: We present a graph based
107 approach, as well as rule-based optimizations to efficiently
108 compute top-k visualizations by filtering bad visualizations
109 that do not need to be considered.
110 Steerable Self-driving Data Visualization. (4) Keyword Search:
111 It allows the users to create good visualizations via keyword
112 search. (5) Faceted Navigation: It also provides a click-based
113 faceted navigation (for example, similar trend, different
114 trend, varying x/y-axis) such that the user can easily navi-
115 gate the potentially huge search space.

116Experiments. (6) We conduct experiments using real-
117world datasets, and visualization use cases, to show that
118DEEPEYE can efficiently discover interesting visualizations.
119Differences With the Conference Version. This work
120extends our conference version [6] with the following new contri-
121butions: (1) We propose to select diversified top-k visualizations
122since there may be many similar visualizations showing redun-
123dant information. We prove that the problem is NP-hard and pres-
124ent an efficient and effective algorithm to solve it (Section 6);
125(2) We design and implement the keyword search and faceted nav-
126igation module, which enables the user to interact with our system
127easily (Section 7); (3) We develop a novel “steerable self-driving”
128data visualization system that is available online (http://deepeye.
129tech); and (4) We conduct a new empirical evaluation to verify the
130effectiveness and efficiency of DEEPEYE (Section 8).

1312 SYSTEM OVERVIEW AND BACKGROUND

1322.1 An Overview of DEEPEYE

133An overview of DEEPEYE is given in Fig. 2, which consists of
134an offline component and an online component.
135Offline Component relies on examples–good visualiza-
136tions, bad visualizations, and ranks between visualizations–
137to train two ML models: a binary classifier (e.g., a decision
138tree) to determine whether a given dataset and an associated
139visualization is good or not, and a learning-to-rank model
140that ranks visualizations (see Section 3 for more details).
141Alternatively, experts may specify partial order as rules
142based on their knowledge to rank visualizations, which will
143be discussed in Section 4.
144Online Component identifies all possible visualizations,
145uses the trained classifier to determine whether a visualiza-
146tion is good or not, employs either the learning-to-rank
147model or expert provided partial orders to select (diversi-
148fied) top-k visualizations (see more details in Sections 4, 5,
149and 6). In order to better navigate the discovery process,
150naturally, users can pose some keywords to get some visual-
151izations or navigate the visualizations via faceted naviga-
152tion (more details in Section 7).

Fig. 2. Framework overview of DEEPEYE.

TABLE 1
An Excerpt of Flight Delay Statistics

Scheduled Carrier
Destination

City Name

Departure

Delay (min)

Arrival

Delay (min)
Passengers

01-Jan 00:05 UA New York �4 1 193

01-Jan 04:00 AA Los Angeles 0 �2 204

01-Jan 06:13 MQ San Francisco 7 �11 96

01-Jan 07:33 OO Atlanta 11 �2 112

� � � � � � � � � � � � � � � � � �

Fig. 1. Sample visualizations for the flight delay statistics.
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153 2.2 Preliminaries

154 We consider a relational table D, defined over the schema
155 AðA1; . . . ; AmÞwithm attributes (or columns).
156 We study fourwidely used visualization types: bar charts,
157 line charts, pie charts, and scatter charts.
158 We consider the following three types of data operations.
159 1. Transform. It aims to transform the values in a column
160 to new values based on the following operations.

161 � Binning partitions the numerical or temporal values
162 into different buckets:
163 – Temporal values are binned by minute, hour, day,
164 week, month, quarter, year, whose data type can
165 be automatically detected based on the attribute
166 values.
167 – Numerical values are binned based on consecutive
168 intervals, e.g., bin1½0; 10Þ, bin2½10; 20Þ, . . .; or the
169 number of targeted bins, e.g., 10 bins.
170 � Grouping groups values based on categorical values.
171 2. Aggregation. Binning and grouping are to categorize
172 data together, which can be consequently interpreted by
173 aggregate operations, SUM (sum), AVG (average), and CNT

174 (count), for the data that falls in the same bin or group.
175 Hence, we consider three aggregation operations: AGG ¼
176 fSUM; AVG; CNTg.
177 3. Order By. It sorts the values based a specific order. Nat-
178 urally, we want some scale domain, e.g., x-scale, to be
179 sorted for easy understanding of some trend. Similarly, we
180 can also sort y-scale to get an order on the y-axis.

181 2.3 Visualization Language

182 To facilitate our discussion, we define a simple language
183 to capture all possible visualizations studied in this paper.
184 For simplicity, we first focus on visualizing two columns, as
185 shown in Fig. 3. Each query contains three mandatory clauses
186 ( VISUALIZE, SELECT, and FROM in bold) and two optional
187 clauses (TRANSFORM andORDERBY in italic). They are fur-
188 ther explained below.
189 " VISUALIZE: specifies the visualization type
190 " SELECT: extracts the selected columns

191 � X0/Y 0 relates to X/Y : X0 just X, grouping values in
192 X, or binning values in X (e.g., by hour); Y 0 is either
193 Y or the aggregation values (e.g., AGG ¼ fSUM; AVG;
194 CNTg) after transformingX
195 " FROM: the source table
196 " TRANSFORM: transforms the selected columns

197 � Binning
198 – BINX BY fMINUTE; HOUR; DAY; WEEK; MONTH; QUARTER;
199 YEARg.
200 – BINX INTON , whereN is the targeted #-bins.
201 – BIN X BY UDFðXÞ, where UDF is a user-defined
202 function, e.g., splittingX by given values (e.g., 0).
203 � Grouping: GROUP BYX

204" ORDER BY: sorts the selected column,X0 or Y 0

205Each visualization query Q over D, denoted by QðDÞ,
206will produce a chart, which is also called a visualization.

207Example 2. One sample visualization query Q1ðDÞ is given
208below, which is used to visualize Fig. 1c.

209VISUALIZE line
210SELECT Scheduled, AVG(Departure Delay (min))
211FROM TABLE I Q1ðDÞ
212BIN Scheduled BY HOUR
213ORDER BY Scheduled

214Search Space.Given a datasetD, there exist multiple vis-
215ualizations. All possible visualizations form our search
216space, which is shown in Fig. 4 for two columns.
217" SELECT can take any ordered column pairs (i.e.,
218XY and YX are different), which givesm� ðm� 1Þ.
219" TRANSFORM can either group by X, bin X (we
220have 9 cases, e.g., by minute, hour, day, week, month,
221quarter, year, default buckets and UDF), or do nothing;
222and aggregate Y using different operations. Thus there
223are ð1þ 9þ 1Þ � 4 ¼ 44 cases for each column pair.
224" ORDER BY can order either column X0, column Y 0,
225or neither: these give 3 possibilities. Note that we cannot
226sort both columns at the same time.
227Together with the four visualization types, the num-
228ber of all possible visualizations for two columns is: m�
229ðm� 1Þ � 44� 4� 3 ¼ 528 mðm� 1Þ, which is fairly
230large for wide tables (i.e., the number of columns m is
231large).

232Remark. As surveyed by [7], real users strongly prefer bar,
233line, and pie charts. In particular, the percentages of bar,
234line and pie charts are 34, 23, and 13 percent respectively;
235and the total percentage of the three types is around
23670 percent. Thus this work focuses on these chart types
237and leaves supporting other chart types as a future work.

2383 MACHINE LEARNING-BASED VISUALIZATION

239RECOGNITION, RANKING, AND SELECTION

240A natural way to capture human perception is by learning
241from examples, through machine learning.
242Features. It is known that the performance of machine
243learning methods is heavily dependent on the choice of

Fig. 3. Visualization language (two columns).

Fig. 4. Search space for two columns.

LUO ET AL.: STEERABLE SELF-DRIVING DATA VISUALIZATION 3
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245 Much of our effort goes into this feature engineering to sup-
246 port effective machine learning. We identify the following
247 features F.

248 1) The number of distinct values in columnX, dðXÞ.
249 2) The number of tuples in columnX, jXj.
250 3) The ratio of unique values in columnX, rðXÞ ¼ dðXÞ

jXj .
251 4) ThemaxðXÞ andminðXÞ values in columnX.
252 5) The data typeTðXÞ of columnX:
253 � Categorical: contains only certain values, e.g.,
254 carriers.
255 � Numerical: contains only numerical values, e.g.,
256 delays.
257 � Temporal: contains only temporal data, e.g., date.
258 � We also use abbreviations: Cat for categorical, Num
259 for numerical, and Tem for temporal.
260 6) The correlation of two columns, cðX;Y Þ, is a value
261 between �1 and 1. The larger the value is, the higher
262 correlation the two columns have.We consider linear,
263 polynomial, power, and log correlations. We take the
264 maximum value in these four cases as the correlation
265 betweenX and Y .
266 7) The visualization type: bar, pie, line, or scatter charts.
267 For two columns X;Y , we have the above features (1–5)
268 for each column, which gives 6� 2 ¼ 12 features; together
269 with (6) and (7), we have a feature vector of 14 features.
270 Visualization Recognition. The first task is, given a column
271 combination of a dataset and a specified visualization type,
272 to decide whether the output (i.e., the visualization node) is
273 good or bad. Hence, we just need a binary classier, for which
274 we use decision tree.We have also tested Bayes classifier and
275 SVM, and the decision tree outperforms SVM and Bayes (see
276 Section 8 for empirical comparisons).
277 Visualization Ranking. The other task is, given two visuali-
278 zation nodes, to decide which one is better, for which we use
279 a learning-to-rank [8] model, which is an ML technique for
280 training the model in a ranking task, which has been widely
281 employed in Information Retrieval (IR), Natural Language
282 Processing (NLP), andDataMining (DM).
283 Roughly speaking, it is a supervised learning task that
284 takes the input space X as lists of feature vectors, and Y the
285 output space consisting of grades (or ranks). The goal is to
286 learn a function F ð�Þ from the training examples, such that
287 given two input vectors x1 and x2, it can determine which
288 one is better, F ðx1Þ or F ðx2Þ. We used the LambdaMART
289 algorithm [9].
290 Visualization Selection. Learning-to-rank model can be
291 used directly for the visualization selection problem: given a
292 set of visualization nodes (and their features vectors) as
293 input, outputs a ranked list.

294Remarks. Using ML models as black-boxes has two
295shortcomings. (1) They may not capture human per-
296ception as precise as experts in some aspects, e.g., there
297are not enough examples for comparing visualizations
298for different columns. (2) It is hard to improve search
299performance of black-boxes. Naturally, expert knowl-
300edge should be leveraged when it can be explicitly
301specified.

3024 PARTIAL-ORDER-BASED SELECTION

303Computing top-k visualizations requires a ranking for all
304possible visualizations. Ideally, we expect a total order of vis-
305ualizations such that the top-k can be trivially identified.
306However, it is hard to define a total order, because two visu-
307alizations may not be directly comparable. A more feasible
308way, from the user perspective, is to specify partial orders for
309comparable visualizations. Afterwards, we can obtain a
310directed graph representing the partially ordered set of vis-
311ualizations (a.k.a. a Hasse diagram).
312We first discuss the ranking principle (Section 4.1), and
313define partial orders (Section 4.2). We then present an algo-
314rithm to compute top-k visualizations based on the partial
315order (Section 4.3). We also propose a hybrid method by
316combing learning-to-rank and partial order (Section 4.4).

3174.1 Visualization Ranking Principle

318Definition 1 [Visualization Node]. A visualization node v
319consists of the original data X;Y , the transformed data X0; Y 0,
320features F, and the visualization type T.
321Given two visualization nodes v and u, we useX1=Y1 (resp.
322X2=Y2) to denote the two columns of v (resp. u), and X0

1=Y
0
1

323(resp.X0
2=Y

0
2) to denote the transformed columns.

324Example 3. Fig. 5 shows more visualizations of Table 1. We
325take 2 visualizations in Figs. 1 and 3 visualizations in Fig. 5
326to illustrate the definition of visualization node, which are
327shown in Table 2.

328We consider three cases, based on different possibilities of
329columns shared between two visualizations.
330Case 1. X1 ¼ X2 and Y1 ¼ Y2: they have the same original
331data. Again, we consider two cases, (I) the same trans-
332formed data (i.e., X0

1 ¼ X0
2 and Y 0

1 ¼ Y 0
2) and (II) different

333transformed data (X0
1 6¼ X0

2 or Y
0
1 6¼ Y 0

2).
334I) X0

1 ¼ X0
2 and Y 0

1 ¼ Y 0
2 : we adopt the techniques from the

335visualization community to rank visualizations [10], [11].

336i) X0
1 and X0

2 are categorical: pie/bar charts are better
337than scatter/line charts, because the latter two focus
338on the trend and correlation betweenX and Y .

Fig. 5. More sample visualizations for the flight delay statistics.
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339 – If Y 0
1 and Y 0

2 are obtained by AVG, then bar charts
340 are better, because pie charts are best used when
341 making part-to-whole comparisons but we cannot
342 get part-to-whole ratio by the AVG operation.
343 – It would be better to use bar charts if there are
344 many categories (for example, � 10), because it is
345 hard to put many categories in a single pie chart.
346 – IfminðY 0

1Þ < 0, pie charts are not applicable.
347 ii) X0

1 and X0
2 are numerical: scatter/line charts are bet-

348 ter than pie/bar charts.
349 – If there is a correlation between X0 and Y 0, then
350 scatter charts are better, because the scatter plot
351 is simply a set of data points plotted on an x and
352 y axis to represent two sets of variables. The
353 shape those data points create tells the story,
354 most often revealing correlation (positive or neg-
355 ative) in a large dataset.
356 – If there is no correlation, line charts are better,
357 because it shows time-series relationships with
358 continuous data. It allows a quick assessment of
359 acceleration (lines curving upward), deceleration
360 (lines curving downward), and volatility (up/
361 down frequency).
362 Observed from Case 1(I), we need to consider a factor to
363 rank different charts. Factor 1 - The matching quality between
364 the data and charts: whether the charts can visualize the
365 inherent features of the data, e.g., trend, correlation.
366 II) X0

1 6¼ X0
2 or Y 0

1 6¼ Y 0
2 : they have different transformed

367 data. Typically, the smaller the cardinality of the trans-
368 formed data, the better.
369 We consider another factor from Case 1(II). Factor 2 - The
370 quality of transformation operations: whether the transforma-
371 tion operators make sense.
372 Case 2: X1 6¼ X2 or Y1 6¼ Y2, and fX1; Y1g \ fX2; Y2g 6¼ ;:
373 They share a common column. Intuitively, for different col-
374 umns, a user is more interested in visualizing an “important
375 column”. We consider another factor based on Case 2.
376 Factor 3 - The importance of a column: whether it is important
377 to visualize.
378 Case 3: fX1; Y1g \ fX2; Y2g ¼ ;: they do not share com-
379 mon attributes. It is hard to directly compare two visualiza-
380 tions. Our hope is to use the transitivity of partial orders,
381 based on the above three factors, to rank them.

3824.2 Partial Order

383Now we are ready to formally introduce our methodology
384to quantify visualizations so as to (partially) rank them,
385based on the above factors.
386Factor 1 - The matching quality between data and chart MðvÞ.
387It is to quantify the “goodness” of this visualization for the
388data and visualization type in v, with four cases.
389i) Pie Chart. If the aggregation function is AVG, i.e.,
390Y 0 ¼ AVGðYÞ, then the pie chart doesn’t make sense as pie
391charts are best used when making part-to-whole compari-
392sons, and we set the value as 0. If there is only one distinct
393value jdðXÞj ¼ 1, we cannot get much information from the
394pie chart and thus we set the value as 0. If there are a small
395number of values, the pie chart has large significance, and
396we set the value as 1. If there are many distinct values (e.g.,
397> 10), the significance of the pie chart will decrease [12],
398and we set the value as 10

jdðXÞj. In addition, if Y values are sim-
399ilar, the pie chart has no much meaning, and we prefer the
400Y values have large difference. It is defined below.

MðvÞ ¼

jdðXÞj ¼ 1

0 or minðY 0Þ < 0

or Y 0 ¼ AVGðYÞP
y2Y �pðyÞlog ðpðyÞÞ 2 � jdðXÞj � 10

10
jdðXÞj

P
y2Y �pðyÞlog ðpðyÞÞ jdðXÞj > 10

8>>>>>><
>>>>>>:

:

(1)
402402

403

404ii) Bar Chart. The significance of bar chart is similar to the
405pie chart and the difference is that bar charts can tolerate
406large jdðXÞj (e.g., > 20) [11] and has no requirement that Y
407values have diverse values, and compute the score as below.

MðvÞ ¼
0 jdðXÞj ¼ 1

1 2 � jdðXÞj � 20
20

jdðXÞj jdðXÞj > 20

8><
>:

: (2)

409409

410

411iii) Scatter Chart. We visualize scatter chart only if X;Y
412are highly correlated. Thus we can set the value as cðX;Y Þ.

MðvÞ ¼ cðX;Y Þ: (3) 414414

415

416iv) Line Chart. We visualize line charts if X is temporal or
417numerical columns. We want to see the trend of the Y val-
418ues. Thus we use the trend distribution to

MðvÞ ¼ TrendðY Þ; (4)
420420

421where TrendðY Þ ¼ 1 if Y follows a distribution, e.g., linear
422distribution, power-law distribution, log distribution or
423exponential distribution; otherwise, TrendðY Þ ¼ 0.
424Normalized Significance. Since it is hard to compare the sig-
425nificance of different charts, we normalize the significance for
426each chart and compute the score as below.

MðvÞ ¼ MðvÞ
maxM

; (5)

428428

429wheremaxM is the maximal score among all the nodes with
430the same chart with v.
431Factor 2 - The quality of transformations QðvÞ. If the trans-
432formed data has similar cardinality with the original data,
433then the transformation is bad. Thus we use the ratio of the

TABLE 2
Example of Visualization Node

LUO ET AL.: STEERABLE SELF-DRIVING DATA VISUALIZATION 5



IEE
E P

ro
of434 cardinality of the transformed data to the cardinality of the

435 original data to evaluate the quality, i.e., jX
0 j

jXj , and the smaller
436 the better. Thus we compute the value as

QðvÞ ¼ 1� jX0j
jXj : (6)

438438

439 Factor 3 - The importance of columns WðvÞ. We first define the
440 importance of a column X;WðXÞ, which is the ratio of the
441 number of candidate visualizations containing column X to
442 the number of candidate visualizations. Note that the candi-
443 date visualizations are those visualizations considered for
444 partial order. Clearly, the more important a column is, the
445 better to visualize the chart with the column. Thus we com-
446 pute the node weight by summing the weight of all columns
447 in the node.

WðvÞ ¼
X
X2v

WðXÞ: (7)
449449

450

451 We normalizeWðvÞ into ½0; 1	 as below.

WðvÞ ¼ WðvÞ
maxW

; (8)

453453

454 wheremaxW is the maximalWðvÞ among all nodes.

455 Example 4. Given Table 1, we get 44 candidate visualiza-
456 tions after visualization recognition. There are 27 candidate
457 visualizations with column Scheduled and 12 candidate vis-
458 ualizations with column Departure Delay (min). Thus the
459 WðvÞ of visualization node Fig. 1c is 27

44 þ 12
44 ¼ 0:89.

460 Given two visualization nodes u; v, if u is better than v
461 on every factor, i.e., MðuÞ � MðvÞ, QðuÞ � QðvÞ, WðuÞ �
462 WðvÞ, then intuitively, u should be better than v. Based
463 on this observation, we define a partial order.

464 Definition 2 [Partial Order]. A visualization node u is better
465 than a node v, denoted by u 
 v, if MðuÞ � MðvÞ, QðuÞ �
466 QðvÞ, WðuÞ � WðvÞ. Moreover, u is strictly better than v,
467 denoted by u � v, if any of the above “�” is “> ”.

468 Example 5. Based on the visualizations node in Table 2, we
469 calculate theMðvÞ,QðvÞ andWðvÞ and get Table 3. Table 3

470shows the score of three factors that influence partial
471order of the visualization nodes. Table 4 shows the partial
472order of the five visualization nodes in the Table 3.

473Note that, comparing different types of charts is a hard
474problem. However, it is common in many search engines,
475e.g., Google returns ranked results with a mixture of videos,
476images andwebpages. Consequently, anymetric is heuristic.
477As will be verified empirically in Section 8, our normalized
478scores for different types of charts performwell in practice.

4794.3 Partial Order-Based Visualization Selection

480Given a table, we first enumerate all visualizations, and use
481the trained binary classifier to generate the candidate visual-
482izations. Then for every pair of candidate visualizations, we
483check whether they conform to the partial order. If yes, we
484add a directed edge. Thus we get a graph GðV;EÞ, where V
485is all visualization nodes and E indicates visualization pairs
486that satisfy partial orders. The weight between u and v,
487where u 
 v, is defined aswðu; vÞ

wðu; vÞ ¼ MðuÞ �MðvÞ þQðuÞ �QðvÞ þWðuÞ �WðvÞ
3

:

(9)
489489

490

491We illustrate by examples about how to rank visualization
492nodes based on the graph.

493Example 6. In Table 4, Fig. 1c � Fig. 1d, so there is a directed
494edge between visualization node Fig. 1c and visualization
495node Fig. 1d. And the weight is ðð1:00� 0Þ þ ð0:99976�
4960:99633Þþ ð0:89� 0:52ÞÞ=3 ¼ 0:4578. Based on the partial
497order in Table 4, we can construct the graph G using the
498visualization nodes Figs. 1c, 1d, 5b, 5c, and 5d, which is
499shown in Fig. 6.
500Efficiently Construct the GraphG. It is expensive to enu-
501merate every node pair to add the edges. To address this
502issue, we propose a quick-sort-based algorithm. Given a
503node v, we partition other nodes into three parts: those
504better than v (v�), those worse than v (v�), and others
505(v 6�6�). Then for each node in u 2 v� (or v�), we do not
506need to compare with nodes in v� (or v�). Thus we can
507prune many unnecessary pairs. We can also utilize the
508range-tree-based indexing method to efficiently construct
509the graph [13].
510Rank Visualization Nodes based on G. A straightforward
511method uses topology sorting to get an order of the nodes.
512It first selects the node with the least number of in-edges,
513and take it as the best node. Then it removes the node and
514selects the next node with the least number of in-edges.
515Iteratively, we can get an order.

516However this method does not consider the weights on
517the edges. To address this issue, we propose a weight-aware

TABLE 3
Factors of Visualization Node

MðvÞ QðvÞ WðvÞ
Fig. 1c 1.00 0.99976 0.89
Fig. 1d 0 0.99633 0.52
Fig. 5b 0.73 0.99995 0.36
Fig. 5c 1.00 0.99995 0.36
Fig. 5d 0.36 0.99998 0.55

TABLE 4
Example of Partial Order

Fig. 1c 1d 5b 5c 5d

1c 
 � n n n
1d n 
 n n n
5b n n 
 n n
5c n n � 
 n
5d n � n n 


Fig. 6. Example of partial order graph.
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518 approach. We first assign each node with a visualization score
519 SðvÞ. The larger the SðvÞ is, the better the visualization v is.
520 " If a visualization node v without out-edge, SðvÞ ¼ 0,
521 else SðvÞ ¼ P

ðv;uÞ2Eðwðv; uÞ þ SðuÞÞ, where wðv; uÞ is the
522 weight of edge ðv; uÞ.
523 Afterwards, we can select the k nodes with the largest
524 scores. Algorithm 1 shows the pseudo code.

525 Algorithm 1. Partial Order-Based Selection

526 Input: V ¼ fv1; v2; . . . ; vng;
527 Output: top-k visualization nodes;
528 1: for each node v in V do
529 2: ComputeMðvÞ, QðvÞ,WðvÞ;
530 3: Partition V � fvg into three parts: V �, V �, V 6�6�;
531 4: Prune unnecessary pairs according to partitions;
532 5: ConstructGðV;EÞ based on range-tree-based indexing;
533 6: ComputeNodeScore(v = root of V );
534 7: return top-k nodes v with largest weights SðvÞ;

535 Function. ComputeNodeScore

536 Input: v
537 Output: SðvÞ
538 1: if outdegreeðvÞ ¼ 0 then
539 2: return SðvÞ ¼ 0
540 3: else
541 4: for eachðv; uÞ in E do
542 5: ComputeNodeScore(u);
543 6: return SðvÞ ¼ P

ðv;uÞ2Eðwðv; uÞ þ SðuÞÞ;

544 Example 7. We use Fig. 6 to illustrate this process. Suppose
545 we aim to get the top-3 visualization nodes in this case.
546 Fig. 6 shows the graph constructed by the visualization
547 nodes in Table 4. Since the out-edges of Figs. 5b and 1d
548 are 0, the scores of Figs. 5b and 1d are 0. Next, we show
549 how to compute the scores of the other three nodes.
550 The weights of edges are: w(Fig. 1c, Fig. 1d) = 0.4578,
551 w(Fig. 5d, Fig. 1d) = 0.1312, w(Fig. 5c, Fig. 5b) = 0.09.

552 The scores of the visualization nodes are:
553 S(Fig. 1c) ¼ w(Fig. 1c, Fig. 1d) + S(Fig. 1d) = 0.4578,
554 S(Fig. 5d) ¼ w(Fig. 5d,Fig. 1d) + S(Fig. 1d) = 0.1312,
555 S(Fig. 5c) ¼ w(Fig. 5c, Fig. 5b) + S(Fig. 5b) = 0.09.
556 Therefore, the top-3 visualization nodes are Figs. 1c, 5d,
557 and 5c.

558 4.4 Hybrid Ranking Method

559 Learning-to-rank works well when there are sufficient good
560 examples (i.e., supervised). Partial order works well when
561 the experts have enough expertise to specify domain knowl-
562 edge (i.e., unsupervised). We propose a hybrid method
563 HybridRank to linearly combine these two methods as fol-
564 lows. Consider a visualization v. Suppose its ranking posi-
565 tion is lv by learning-to-rank and its ranking position is pv
566 by partial order. Then we assigns v with a score of lv þ apv,
567 where a is the preference weight which can be learned
568 by some labelled data, and rank the visualizations by
569 the score.

5705 OPTIMIZING PARTIAL ORDER-BASED METHOD

571A closer look at the process of visualization enumeration (i.e.,
572the search space) suggests that some visualizations should
573not be considered at all–those visualizations that humanwill
574never generate or consider, even if they have unlimited bud-
575get (or time). In order to directly prune these bad visualiza-
576tions, we define rules to capture “meaningful” operations
577(Section 5.1). We then present algorithms that utilize these
578rules to compute top-k visualizations (Section 5.2) and dis-
579cuss how to generate rules (Section 5.3).

5805.1 Decision Rules for Meaningful Visualizations

581We are ready to present the rules that can (possibly) gener-
582ate meaningful visualizations from three perspectives: (1)
583transformation rules: whether a grouping or binning opera-
584tion is useful; (2) sorting rules: whether a column should be
585sorted; and (3) visualization rules: whether a certain type of
586visualization is right choice. These rules use the features (or
587data representations) discussed in Section 3.
5881. Transformation Rules. We first consider two columns X
589and Y , and the techniques can be easily extended to support
590one column or more than 2 columns. Without loss of gener-
591ality, we assume that X is for x-axis and Y is for y-axis.
592Next we discuss how to transform X;Y to X0; Y 0, by consid-
593ering the two transformation operators (GROUP BY and BIN).
594We categorize the rules as follows.

595I) X is categorial: we can only group X (cannot bin X).
596After generating the groups, we apply aggregation
597functions on Y for two cases. (i) If Y is numerical, we
598can apply an operation in AGG ¼ fAVG; SUM; CNTg. (ii) If
599Y is not numerical, we can only apply CNT. Thus, we
600have two rules.
601� TðXÞ ¼ Cat;TðYÞ ¼ Num! GROUP BYðXÞ; AGGðYÞ.
602� TðXÞ ¼ Cat;TðYÞ 6¼ Num! GROUP BYðXÞ; CNTðYÞ.
603II) X is numerical: we can only bin X (cannot group X).
604After generating the buckets, we can apply aggrega-
605tion functions on Y . (i) If Y is numerical, we can apply
606an operation in AGG ¼ fAVG; SUM; CNTg. (ii) If Y is not
607numerical, we can only apply CNT. Thus we have two
608rules.
609� TðXÞ ¼ Num;TðYÞ ¼ Num! BINðXÞ; AGGðYÞ.
610� TðXÞ ¼ Num;TðYÞ 6¼ Num! BINðXÞ; CNTðYÞ.
611III) X is temporal: we can either group or binX. After gen-
612erating the groups or buckets, we can apply aggrega-
613tion functions on Y . (i) If Y is numerical, we can apply
614an operation in AGG ¼ fAVG; SUM; CNTg. (ii) If Y is not
615numerical, we can only apply CNT. Thus we have the
616following rules.
617� TðXÞ ¼ Tem;TðYÞ ¼ Num! GROUP BY=BINðXÞ; AGGðYÞ.
618� TðXÞ ¼ Tem;TðYÞ 6¼ Num! GROUP BY=BINðXÞ; CNTðYÞ.
619Example 8. Consider Table 1. If X = carrier (categorial) and
620Y = passengers (numerical), we can apply GROUP BY(car-
621rier), AVG(passengers) and get Fig. 5b. If X = scheduled (tem-
622poral) and Y = departure delay (numerical), we can apply
623BIN(scheduled), AVG(departure delay) and get Fig. 1c.
6242. Sorting Rules. Given two (transformed) columns,
625we can sort either X or Y . Intuitively, we sort numeri-
626cal and temporal values in X but cannot sort categori-
627cal values. Note we can sort numerical values in Y ;
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628 otherwise it does not make sense. Thus we get the fol-
629 lowing rules.

630 � TðXÞ ¼ Num=Tem! ORDER BYðXÞ.
631 � TðY Þ ¼ Num! ORDER BYðYÞ.
632 Example 9. Based on Fig. 1c, we can sort scheduled (tempo-
633 ral column) and get a trend of average departure delay,
634 which shows average departure delay fluctuates over time.
635 It stands at the first relative high point 
 11:00, after
636 which it starts to decline and rises again and reaches the
637 peak 
 19:00.

638 3. Visualization Rules. For Y , it can be a numerical column
639 but cannot be other types of columns.

640 I) If X is categorical, Y is numerical, we can only draw
641 bar charts and pie charts.
642 II) If X is numerical, Y is numerical, we can draw the line
643 charts and bar charts. Moreover, ifX;Y have correla-
644 tions, we can also draw scatter charts.
645 III) IfX is temporal, Y is numerical, we draw line charts.
646 Thus we can get the following rules.

647 � TðXÞ ¼ Cat;TðYÞ ¼ Num! bar=pie.
648 � TðXÞ ¼ Num;TðYÞ ¼ Num! line=bar.
649 � TðXÞ ¼ Num;TðYÞ ¼ Num, ðX; Y Þ correlated! scatter.
650 � TðXÞ ¼ Tem;TðYÞ ¼ Num! line.

651 Example 10. Fig. 5b is a meaningful bar chart, which con-
652 sists of categorical column carrier as X and numerical col-
653 umn passengers as Y .

654 5.2 Rule-Based Visualization Selection

655 An Enumeration Algorithm. A straightforward algorithm
656 enumerates every column pairs. (We need to consider both
657 ðX;Y Þ and ðY;XÞ.) For each pair ðX;Y Þ, we enumerate
658 every transformation rule. If the rule can be applied, we
659 transform the data in the two columns into ðX0; Y 0Þ. Then
660 we enumerate every sorting rule and transform it into
661 ðX00; Y 00Þ. Next, we try different visualization rules and
662 draw the charts if the rule can be applied to ðX00; Y 00Þ.
663 Based on these rules, we can get a set of visualization
664 candidates. Next we use them to construct a graph and
665 select top-k visualizations from the graph. However, this
666 algorithm is rather expensive as it requires to first enumer-
667 ate all candidates and then identify top-k ones from the
668 graph. Next we propose optimization techniques.
669 A Progressive Method. We propose a progressive method
670 to improve the performance of identifying top-k visualiza-
671 tions. The basic idea is that we do not generate all candidate
672 visualizations, while progressively generate the candidates
673 with the largest possibility to be in the top-k results.
674 Algorithm Overview. For each type of column, categorical,
675 temporal, numerical, we keep a list of chartsw.r.t. the column
676 type, i.e., Lc, Lt, Ln. We progressively generate the lists. For
677 each list, we split it into different sublists based on the col-
678 umns, we useLX

c to denote the list of charts that take the cate-
679 gorical columnX as x-axis.We can similarly defineLt,Ln for
680 temporal and numerical columns. Then we build a tree-like
681 structure. The dummy root has three children Lc, Lt, Ln.
682 Each nodeLc has several children, e.g.,LX

c , for each categori-
683 cal column X in the table. Next we use the tournament-like

684algorithm to select the best chart from leaf to root. For leaf
685nodes, we generate the best visualization in each leaf node
686w.r.t. the partial order. Then for each node Lc, we select the
687best visualization from the visualizations of its children. Sim-
688ilarly from the root, we can select the best visualization from
689its children. If the best chart is selected from LX

c , we get the
690next best chart from the list and adjust the tournament. After
691we get k charts, it terminates.
692Computing the Best Chart From LX

c in the Leaf Node. For
693each list LX

c , we can only generate the bar chart and pie
694chart. We can get a list of charts based on each factor. Then
695we get the best one from these lists.
696Computing the Best Chart From LX

t in the Leaf Node. For
697each list LX

t , we only generate the scatter chart. We get a list
698of charts based on each factor and get the best one from
699these lists.
700Computing the Best Chart From LX

n in the Leaf Node. For
701each list LX

n , we can only generate the line chart and bar
702chart. We can get a list of charts based on each factor. Then
703we get the best one from these lists.
704Computing the Best Chart From Lc=Lt=Ln. We just need to
705select the best one from its children.
706Computing the Best Chart From the Root. We compare dif-
707ferent charts from its children and select the best one.
708Based on the tournament we can generate the top-k
709charts without generating all the candidate charts.
710Optimizations. Now, we propose several optimization
711techniques to improve the performance.
712First, for each columnX, when grouping and binning the
713column, we compute the AGG values on other columns
714together and avoid binning/grouping multiple times.

7151) For each categorical/temporal column, we group the
716tuples in D and compute the CNT value; for each
717numerical column, we compute the AVG and SUM val-
718ues in each group. Next we visualize the data based
719on the visualization rules.
7202) For each temporal column, we bin the tuples in D,
721and compute the CNT value; for each numerical col-
722umn, we compute the AVG and SUM values in each
723bin. Next we visualize the data based on the visuali-
724zation rules.
7253) For each numerical column, we bin the tuples in D,
726and compute the CNT value; for each numerical col-
727umn, we compute the AVG and SUM values in each
728group. Next we visualize the data based on the visu-
729alization rules.
730Second, we do not generate the groups of a column if
731there have k charts in Lc better than any chart in this col-
732umn. Third, we postpone many operations after selecting
733the top-k charts, e.g., sorting, AVG operations. Thus we avoid
734many unnecessary operations that are not in top-k.

7355.3 Rule Generation and Completeness

736Below, we will discuss the “completeness” of rules intro-
737duced in Section 5.1, in terms of that they cover all cases
738that a visualization can potentially be meaningful (or good).
739Transformation Rule Generation and Completeness. For trans-
740formation rule, we only consider categorical, numerical, and
741temporal columns. For categorical column, we can only
742apply group operations on it and apply aggregation on other
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743 columns. For numerical and temporal columns, we can only
744 apply bin operations on it and apply aggregation on other
745 columns. We can see that our rules consider all the possible
746 cases and the transformation rules are complete.
747 Sorting Rule Generation and Completeness. It is trivial to
748 generate sorting rules because we can only sort the numeri-
749 cal and temporal values on x-axis and numerical values on
750 y-axis. We can see that our rules consider all the possible
751 cases and the sorting rules are complete.
752 Visualization Rule Generation and Completeness. We only
753 need to consider categorical, numerical, and temporal col-
754 umns.We can only put the numerical columns on y-axis, and
755 put categorical, numerical, and temporal columns on x-axis.
756 For each case, there are four possible charts. Our rules con-
757 sider all cases and the visualization rules are complete.

758 6 DIVERSIFIED VISUALIZATIONS SELECTION

759 The visualization selection method in Section 4 may select
760 “similar” visualizations but cannot provide “diversified” visu-
761 alizations. For example, the method may return many bar
762 charts with high scores but only a few line charts. Naturally,
763 the user wants these results to be diversified [4]. To address
764 this issue, we propose a diversified visualizations selection
765 method. Specifically, we treat the top-k visualizations selec-
766 tion problem as a bi-criteria optimization problem, which
767 considers both the visualization score and diversity. Next we
768 define the diversity in our problem first and then introduce
769 our diversified top-k visualizations selection algorithm.
770 We measure the diversity of two visualizations from five
771 aspects, i.e., visualization types, x-axis, y-axis, group/bin
772 operations, aggregate functions. Thus the feature vector of a
773 visualization vi is denoted as xi ¼ ½x1i ; x2i ; x3i ; x4i ; x5i 	. More
774 specifically, x1i is a one-hot vector, which encodes the four
775 visualization types: bar, pie, line, and scatter. For example,
776 x1i ¼ ½1; 0; 0; 0	 represents a bar chart; x2i (resp. x3i ) is also a
777 one-hot vector with length m, denoting which column is
778 used by the x-axis (resp. y-axis) of the visualization v, where
779 m is the number of columns of the input table; x4i is a one-hot
780 vector with length 3, which denotes the operations GROUP BY,
781 BIN orNA; x5i is a one-hot vectorwith length 4, which denotes
782 aggregation functions SUM, AVG, CNT, orNA.Next, we concate-
783 nate xi ¼ ½x1i ; x2i ; x3i ; x4i ; x5i 	 to a vector xi. Then given two visu-
784 alizations vi and vj, we can measure the diversity between vi
785 and vj bywell-known similarity function, e.g., cosine similar-

786 ity, i.e.,Dðvi; vjÞ ¼ 1� Cosineðxi; xjÞ ¼ 1� ~xi~xj
jj~xijjjj~xjjj.

787 Next, we formally define our diversified top-k visualiza-
788 tions selection problem as below.

789 Definition 3 [Diversified Top-k Visualizations Selec-
790 tion]. Given a list of visualizations V with size n, the diversi-
791 fied top-k visualizations selection problem aims to compute a
792 list of visualizations R � V such that

R ¼ argmax
R�V;jRj¼k

FðV Þ; (10)

794794

795 where FðV Þ ¼ ð1� �ÞPvi2V SðviÞ þ 2�
k�1

P
vi;vj2V Dðvi; vjÞ.

796 � 2 ð0; 1	 is a parameter controlling the trade-off between
797 the visualization score and diversity, which can be set by the
798 user. The intuition behind this definition is that we aim to

799maximize FðV Þ so that we can derive a list of visualizations
800with relatively high visualization score as well as high
801diversity. We observe that there are k elements in the visual-
802ization score sum (i.e.,

P
vi2V SðviÞ) and kðk�1Þ

2 numbers in
803the diversity part. Therefore, we scale down the diversity
804part by 2�

k�1.
805Unfortunately, the diversified top-k visualizations selec-
806tion problem is NP-hard as proved below.

807Theorem 1. The diversified top-k visualizations selection prob-
808lem is NP-hard.

809Proof. A special case of our problem is when � ¼ 1, it is
810equivalent to the max-sum dispersion problem [14], which
811is NP-hard. Therefore, the diversified top-k visualizations
812selection problem includes the max-sum dispersion prob-
813lem and thus our problem is NP-hard. tu

814Algorithm 2. DiversifiedTopKVisSelectio

815Input: visualizations list V ¼ ½v1; v2; . . . ; vn	, k, �;
816Output: diversified top-k visualizations list R;
8171: R:appendðv1Þ;
8182: for each vi in V do
8193: Added = True;
8204: for eachvj in R do
8215: ifDðvi; vjÞ < � then
8226: Added = False;
8237: break;
8248: if Added = True then R:appendðviÞ;
8259: if jRj ¼ k then break;
82610: return R;

827There exists a 2-approximation algorithm [15] to solve the
828max-sum dispersion problem. We can adapt this algorithm to
829our problem. The key idea is that given the visualization list
830V , it finds a pair of visualizations ðvi; vjÞ with the maximum
831Fðfvi; vjgÞ, adds them into the result list, removes them from
832V and repeats until k visualizations are derived. However,
833the time complexity of this algorithm is Oðkn2Þ because it
834costs Oðn2Þ to compute the pairwise diversity scores and
835OðkÞ to find the results. The 2-approximation algorithm has
836two drawbacks: (i) it incrementally builds the result list R by
837selecting a pair of visualizations ðvi; vjÞ with maximum
838Fðfvi; vjgÞ in each iteration, but fails to consider the diversity
839between current visualization pair ðvi; vjÞ and other pairs
840already in the result listR; and (ii) it results in high computa-
841tional cost and cannot meet DEEPEYE’s interactive speeds
842requirement.
843Therefore, we propose a heuristic algorithm to find
844diversified top-k visualizations effectively and efficiently, as
845shown in Algorithm 2. The key idea is that it first selects a
846visualization with the highest score, greedily adds the next
847one with the highest score if and only if it has a high diver-
848sity score with every visualization in the result list.
849The pseudo code is shown inAlgorithm 2. It takes as input
850the visualization ranking list V obtained by partial order-
851based approach, the number of visualizations k to be selected,
852and the diversity threshold �, where a larger � value indicates
853a higher diversity. The input visualization list V is sorted by
854visualization scores in descending order. It first adds the
855visualization with the highest score v1 from V into the result
856list R (Line 1). Next, we iterate each visualization vi 2 V in
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857 descending order, and check whether the diversity scores
858 between vi and any visualization vj in R is smaller than the
859 threshold (Lines 4–7). If so, we just drop it; otherwise we add
860 vi intoR (Line 8).
861 The algorithm iterates the above steps until k visualiza-
862 tions are selected or all visualizations in V are visited. The
863 time complexity of our algorithm is OðknÞ, which is much
864 more efficient compared with the approximate algorithm.

865 7 DEEPEYE SYSTEM

866 DEEPEYE contains two main modules, a front-end user inter-
867 face, which handles the interaction with the user, and a
868 back-end service, which recommends visualizations based
869 on the front-end requests. The front-end is a web-based
870 user interface (Fig. 7). It allows users to upload their dataset
871 to do data visualization. Then the back-end of DEEPEYE can
872 automatically recommend meaningful visualizations to pro-
873 vide the user with “self-driving data visualization”. Besides,
874 the user can input a keyword query to obtain visualizations
875 relevant to the query and explore the space of visualization
876 results by faceted navigation.
877 (1) User Experience With Self-Driving Data Visualization. In
878 self-driving data visualization, the user uploads her dataset
879 (e.g., a CSV file) to DEEPEYE without any other operations.
880 Then DEEPEYE will recommend meaningful visualizations to
881 the user efficiently (see Fig. 7-�3 ). In this case, users can sim-
882 ply browse the recommendation list to pick their target
883 visualizations.
884 (2) User Experience With Steerable Self-Driving Data Visuali-
885 zation. The user can “steer” by the following modules.
886 ! Keyword Search. Instead of guessing the users intent,
887 DEEPEYE takes a keyword query as input and suggests some

888visualizations relevant to the keywords. In a nutshell, given
889a keyword query, DEEPEYE tries to find those visualizations
890whose corresponding queries match the query keywords.
891We first enumerate all possible visualization queries, called
892candidate queries, based on decision rules in Section 5.1.
893Next, we tokenize the keyword query into a set of words/
894phrases by n-gram techniques. For each word/phrase, we
895identity their mapping types, i.e., reserved keywords in our
896query (e.g., group by), table name (e.g., flight delay), col-
897umn name (e.g., departure delay) and values in columns. In
898this way, we can get all relevant candidate queries and rank
899them by traditional ranking algorithms. Note that we can
900utilize WordNet [16], [17], [18] to identify synonyms and
901string similarity functions (e.g., Edit distance) to tolerate
902spelling mistake, which can further improve the quality of
903mapping. Thus we can select a set of candidate queries possi-
904bly relevant to the user’s intent. Each candidate query can
905generate a visualization. Next, we return visualizations
906based on the generated candidate queries.
907Now the user can query the visualizations by keyword
908search. For example, given a query “Show me bar chart about
909departure delay” (see Fig. 7–�2 ), DEEPEYE will recommend bar
910charts relevant to the attribute departure delay. That is, DEEP-

911EYE will fix one attribute departure delay and discover other
912attributes that when being combined with attribute depar-
913ture delay using an appropriate type of visualization, will
914produce good visualizations.
915! Faceted Navigation. When the user browses the visual-
916izations list generated either by keyword search or self-
917driving mode, she/he can pick one good visualization, and
918do further faceted navigation to find other “interesting”
919visualizations by facets among multiple visualizations.
920Different from traditional faceted navigation, e.g., faceted

Fig. 7. DEEPEYE Screenshot. Part-�1 is responsible for dataset specification. The user can upload or select a dataset for visualization. It also supports
filtering data at the “Filter” Panel. Panel-�2 is a keyword search box that the user can input the keyword query. DEEPEYE will suggest good visualiza-
tions relevant to the keyword query. Panel-�3 shows visualizations recommended by the system. For each visualization, DEEPEYE provides explana-
tions to help the user better understand the result. The user can zoom in by clicking “Zoom” button for more details. The user can pick a visualization
to do faceted navigation by clicking the “Faceted” button. The results of faceted navigation are shown in part-�5 .
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922 easily defined by the categories of items, it is not easy to
923 define the facets for visualizations because there is no con-
924 sensus about criteria of finding interesting visualizations.
925 Therefore, we propose to define facets based on the clause of
926 our visualization query. We support facets that are closely
927 related to the current visualization technologies, such as sim-
928 ilar visualizations, different (or deviated) visualizations, var-
929 ious visualization types, various x/y axis, different
930 aggregate functions, or changing group/bin operations.
931 Next, when a user selects a visualization, we can recommend
932 some visualizations with the same facets. Suppose that the
933 user selects the first stacked bar chart (Fig. 7–�3 ) by clicking the
934 “Faceted” button, DEEPEYE will suggest appropriate facets
935 and return visualizations to the user. We can see from Fig. 7–
936 �5 that, the suggested facets for this selected visualization are
937 visualization type, x-axis, y-axis, group/bin, similar trend,
938 different trend, and different category. The first chart under
939 the facet “By Group/Bin” is a stacked bar chart with differ-
940 ent group/bin operation compared with the selected one.
941 The stacked bar chart under facets “By Group/Bin” first
942 groups by carrier and then bins x-axis into buckets by the
943 day of the month. It depicts the distribution of average
944 departure delay during the day of the month and the daily
945 average departure delay for each carrier. Note that, the user
946 can do further faceted navigation iteratively, which may get
947 more meaningful visualizations. Fig. 7–�4 keeps track of the
948 visualizations that the user already browsed.
949 ! Interactive Refinement. DEEPEYE supports popular inter-
950 actions such as zoom in/zoom out by leveraging an interac-
951 tive visualization library ECHARTS (http://echarts.baidu.
952 com). DEEPEYE also generates natural language explanation
953 for each visualization to help the user better understand the
954 visualization and data based on a rule-based translation
955 method [19], [20]. Besides, the user can check the visualiza-
956 tion query and can also customize the visualization by mod-
957 ifying the visualization query, especially for expert users.

958 8 EXPERIMENTS

959 The key questions we answered in this evaluation are:
960 (1) How does DEEPEYE work for real cases? (2) Howwell does
961 DEEPEYE perform in visualization recognition? (3) Whether
962 the visualization selection of DEEPEYE canwell capture human
963 perception? (4) How does keyword search component work
964 in visualization tasks? (5) How efficient is DEEPEYE?

965 8.1 Experimental Setup

966 Datasets. We have collected 42 datasets from various
967 domain such as real estate, social study, and transportation.
968 The statistical information are given in Table 5: the number
969 of tuples ranges from 3 to 99,527, with an average 3,381; the

970number of columns is from 2 to 25; the statistics of #-col-
971umns for temporal, categorical, numerical is also given.
972Note that we assume that the dataset is clean enough for
973visualization. For those dirty data, we can first employ data
974cleaning techniques [21], [22] to clean data errors and then
975for visualization in DEEPEYE.
976Ground Truth. We have asked 100 students to label the
977dataset. (1) For each dataset, we enumerated all the possible
978candidate visualizations and asked them to label which are
979good/bad. (2) For good visualizations, we asked them to
980compare two visualizations which are better. Then we
981merged the results to get a total order [23]. We got 2520/
98230892 annotated good/bad charts, and 285,236 comparisons
983for visualization pairs. Note that if a table has n visualiza-
984tions, there are nðn�1Þ

2 rankings for one table.
985Training. We selected 32 datasets as training datasets and
986trainedMLmodels based on the ground truth of 32 datasets.
987We tested on other 10 datasets – this can help justify whether
988the trained ML models can be generalized. These 10 tables
989are given in Table 6, which are selected to cover different
990domains, various number of tuples and columns. Note that
991the last column, #-charts, refers to good visualizations. We
992also conducted cross validation and got similar results.
993Experimental Environment. All experiments were con-
994ducted on a MacBook Pro with 8 GB 2133 MHz RAM and
9952.9 GHz Intel Core i5 CPU, running OS X Version 10.12.3.

9968.2 Experimental Results

997Exp-(1): Coverage in Real Visualization Tasks. The most impor-
998tant item on nearly everybody’s wish list is to see how DEEP-

999EYE works for real visualization tasks. We collected 10 real-
1000world visualization tasks in Table 7 (different from the
1001above 42 datasets) with both datasets and visualizations.
1002Each task is provided by senior users or domain experts on
1003the internet.
1004For example, T1.Healthcare is a visualization task on web-
1005site (http://getdataseed.com) generated by a data analyst.
1006The data analyst designed two visualizations to visually
1007analyze T1.Healthcare dataset. The two visualizations are
1008given in Fig. 8a. The bar chart depicts how many men and
1009women died (more women died), while the line chart shows
1010the number of deaths change over time. Next, we ran the
1011dataset of T1 on DEEPEYE to verify whether DEEPEYE can rec-
1012ommend such good visualizations. We used partial order-
1013based visualization selection method in this experiment.
1014Fig. 8b is the top-3 results of running DEEPEYE on T1. This is
1015the best case since all 2 visualizations used by the website

TABLE 5
Statistics of Experimental Datasets

#-Tuples #-Columns

Max Min Avg
Max Min Avg

Temporal/Categorical/Numerical/All

99527 3 3381 2/12/21/25 0/0/1/2 1/2/5/7

TABLE 6
Ten Test Datasets

No. Datasets #-Tuples #-Columns #-Charts

X1 Hollywood’s Stories 75 8 48
X2 Foreign Visitor Arrivals 172 4 10
X3 McDonald’s Menu 263 23 275
X4 Happiness Rank 316 12 123
X5 ZHVI Summary 1,749 13 36
X6 NFL Player Statistics 4,626 25 209
X7 Airbnb Summary 6,001 9 42
X8 Top Baby Names in US 22,037 6 17
X9 Adult 32,561 14 103
X10 Flight Delay 99,527 6 44

LUO ET AL.: STEERABLE SELF-DRIVING DATA VISUALIZATION 11
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1016 (data analyst) are automatically discovered by DEEPEYE in
1017 the top-3 visualizations. Besides, DEEPEYE also recommend
1018 other novel and interesting visualizations, e.g., the stacked
1019 bar chart in Fig. 8b, for the dataset of T1.
1020 Note that traditionally, this will take hours for experi-
1021 enced data analysts who know the data very well to pro-
1022 duce; now, you blink and it’s done.
1023 Applying DEEPEYE for other datasets are shown in Table 8.
1024 Take task T2 for instance, Table 8 shows that T2 has 4 practi-
1025 cally used visualizations, which can be covered by top-6
1026 results from DEEPEYE.
1027 We have two main research findings from this group
1028 of experiment. (1) DEEPEYE can automatically discover vis-
1029 ualizations needed in practice to tell compelling stories,
1030 which makes creating good visualizations a truly sexy
1031 task. (2) Sometimes the k visualizations needed to cover
1032 real cases is much larger than the #-real ones, e.g., it needs
1033 top-40 results to cover the 8 real cases in task T5. This is
1034 not bad at all since (i) users just browse few pages to find
1035 the ones they need; (ii) the other results not used by the
1036 real cases are not necessarily bad ones (some of them are

1037novel and interesting), for many cases the users may like
1038them if they have seen them.
1039Exp-(2): Effectiveness of Visualization Recognition. Our main
1040purpose in this group of experiment is to test (1) whether
1041binary classifiers can well capture human perception for
1042visualization recognition; and (2) which ML model best fits
1043our studied problem?
1044We tested three popular ML models – Bayes, SVM and
1045decision tree (DT). We used precision (P), recall (R) and F-
1046measure (i.e., the harmonic mean of precision and recall).
1047Table 9 shows the effectiveness for bar (B), line (L), pie
1048(P), and scatter (S) charts, which is the average of the 10
1049tested datasets. (A) shows the average results of four types
1050of visualizations. We can see that the decision tree performs
1051best and achieves averagely 95.08 percent F-measure–this
1052justifies decision tree as a good choice for visualization
1053recognition problem. The main reason is that the visualiza-
1054tion recognition should follow the rules as discussed in
1055Section 5.1 and decision tree could capture these rules well.
1056Exp-(3): Effectiveness of Visualization Selection. We used the
1057normalized discounted cumulative gain (NDCG) [24] as the
1058measure of ranking quality, which calculates the gain of a
1059result based on its position in the result list and normalizes
1060the score to ½0; 1	 where 1 means perfect top-k results by
1061comparing with the ground truth. We compared the NDCG
1062values of learning-to-rank model, partial order-based
1063approach, and HybridRank for 10 datasets X1-X10.
1064Fig. 9 reports the results. It shows clearly that partial
1065order is better than learning-to-rank. The maximal NDCG
1066of partial order is 0.97, and minimal NDCG of partial order
1067is 0.81, while the maximal and minimal NDCG of learning-
1068to-rank are 0.85 and 0.52, respectively. This is because the
1069partial order ranked the visualization based on expert rules
1070which captures the ranking features very well but learning-
1071to-rank cannot learn these rules very well. HybridRank out-
1072performs learning-to-rank and partial order-based visuali-
1073zation selection approach. For example, the average NDCG
1074of HybridRank for 10 datasets is 0.94 and outperforms
1075learning-to-rank and partial order method by 32.4 and 6.8
1076percent respectively.
1077Overall, the general observation is that HybridRank per-
1078forms best and the partial order-based approach beats learn-
1079ing-to-rank for visualization selection.

TABLE 7
Ten Visualization Tasks With Data and Visualizations

Visualization Tasks Example Visualizations Source (URL)

T1.Healthcare https://getdataseed.com/demo/
T2.Flight Statistics https://www.transtats.bts.gov/airports.asp?pn=1
T3.US Baby Names https://deepsense.io/us-baby-names-data-visualization/
T4.Happy Country http://www.kenflerlage.com/2016/08/whats-happiest-

country-in-world.html
T5.Titanic Data https://public.tableau.com/profile/vaibhav.bhagat#!/

vizhome/BIProject_4/Dashboard1

T6.Avg. Food Price http://data.stats.gov.cn/english/vchart.htm
T7.China Economy

T8.Unemployment https://www.maine.gov/labor/cwri/index.html
T9.Employment
T10.Income&Wages

Fig. 8. Case study on visualization Task–T1.

TABLE 9
Avg. Effectiveness (%): B (Bar), L (Line),

P (Pie), S (Scatter) A (Avg)

TABLE 8
Coverage by DEEPEYE (The #-Visualizations Used in the Existing
Visualization Tasks are Covered by Top-k Results in DEEPEYE)

Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

#-Vis 2 4 5 5 8 27 35 6 4 4
Top-k 3 6 11 23 40 27 35 17 11 18

Fig. 9. Average effectiveness of visualization ranking & selection.
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of1080 Next, we ran X1-X10 datasets on DEEPEYE to evaluate the

1081 effectiveness of our diversified top-k visualizations selection
1082 algorithm. We set k ¼ n

2 for top-k and diversity parameter
1083 � ¼ 0:5. We compared our algorithm with learning-to-rank,
1084 partial order-based approach, and a 2-approximation diver-
1085 sified top-k visualizations selection algorithm. We utilize
1086 a-NDCG [25] as a metric to evaluate the diversity. a-NDCG
1087 is the variant of NDCG that balances relevance and diver-
1088 sity by rewarding diversity and penalizing redundant ones.
1089 We set a ¼ 0:5 as suggested by the literature [25].
1090 The results for ten datasets are shown in Fig. 10. In gen-
1091 eral, we observe that learning-to-rank is the worst (i.e., 0.82
1092 a-NDCG). The partial order is better than learning-to-rank
1093 but worse than other two diversified top-k selection
1094 algorithms among ten datasets. As expected, both our diver-
1095 sified top-k visualizations selection algorithm and the 2-
1096 approximation baseline work well. More concretely, our
1097 algorithm achieves averagely 0.93 a-NDCG and performs
1098 best. The 2-approximation baseline achieves averagely 0.90
1099 a-NDCG. For a better understanding, we show running
1100 examples in Fig. 11, which shows the top-6 visualizations
1101 recommended by four methods. Both learning-to-rank and
1102 partial order-based approaches recommend visualizations
1103 that are individually to the interest of the user but with very
1104 similar trend or chart types. This is likely to make users feel
1105 boring when browsing those similar charts. In this case, the
1106 2-approximation algorithm also suggests some homoge-
1107 neous results such as the two scatter plots (the third one and
1108 the fourth one in Fig. 11c). Instead, as shown in Fig. 11d, the
1109 top-6 visualizations recommended by our algorithm are

1110high diversity to each other, which can cover the four widely
1111used types of visualizations.
1112Exp-(4): Usability of Keyword Search.
1113Our main purpose in this group of experiments is to test
1114whether the keyword search component can save the inter-
1115action time to complete a visualization task.
1116First, we recruited 6 participants (1 female, 5 male) from
1117the CS Department as real users to participate in this
1118experiment. All participants have data analysis and visual-
1119ization experience. Our experiment began with an intro-
1120duction to the 10 datasets in Table 6 and a short tutorial
1121about DEEPEYE. We considered two interaction methods:
1122(1) Browse: participants only browse the visualizations list
1123recommended by DEEPEYE to pick their desired visualiza-
1124tion results. Note that, we used diversified visualizations
1125selection method as default; and (2) Browse/Keyword
1126Search: participants can browse the visualizations list and
1127use the keyword search component alternately to find
1128their desired visualization results. We asked each partici-
1129pant to perform a visualization task (i.e., picking their
1130desired visualizations) on each dataset in two interaction
1131methods respectively. We recorded the interaction time of
1132each visualization task. Hence, there are 60 interaction
1133time records for each type of interaction method.
1134We used box plots to concisely visualize the distribution
1135of the interaction time of each interaction method. The mid-
1136dle line represents the median value of the records while
1137the box boundaries correspond to the 25th and 75th percen-
1138tiles. The top and bottom whiskers are set to denote the 95th
1139and 5th percentiles respectively. As shown in Fig. 13, we
1140can see that most of the visualization tasks can be completed
1141in 65� 110 seconds under the Browse method. If we allow
1142participants to use the keyword search component, the
1143interaction time significantly reduces to 30� 50 seconds,
1144which indicates that participants using the Browse/Key-
1145word Search complete visualization tasks are much faster
1146than them using the Browse method. The experimental
1147results show that completing a visualization task using the
1148keyword search component is more effective.

Fig. 10. Effectiveness of diversified top-k visualizations selection.

Fig. 11. Top-6 visualizations recommended by DEEPEYE.
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1150 We first compared the efficiency of our greedy divers-
1151 ified top-k visualizations selection algorithm with the 2-
1152 approximation algorithm (i.e., the baseline). We set k ¼ n
1153 (n is the total number of visualizations can be selected) and
1154 varied the #-visualizations. We repeated all experiments ten
1155 times to compute the average results. Fig. 14 reports the
1156 results. We can see that our algorithm is more efficient than
1157 the baseline, especially when the number of visualizations
1158 become larger. More concretely, for the dataset X3, the base-
1159 line takes 2239.20 ms to rank 275 visualizations, while our
1160 greedy algorithm only takes 2.34 ms.
1161 We have also tested the efficiency of DEEPEYE on ten data-
1162 sets X1–X10. Each dataset is associated with 4 bars that mea-
1163 sure the end-to-end running time from a given dataset to
1164 visualization selection. The time of each bar consists of two
1165 parts: (i) generate all candidate visualization without/with
1166 (i.e., E/R) using our transformation/sorting/visualization
1167 rules; and (ii) visualization selection using learning-to-
1168 rank/partial order-based solutions. We annotate the per-
1169 centage (%) of these two parts in each bar, e.g., the first bar
1170 means that it needs 550 ms, where visualization enumera-
1171 tion (E) takes 20 percent time and visualization selection
1172 using learning to rank (L) takes 80 percent.
1173 Fig. 12 tells us the followings: (1) using the rules
1174 (Section 5.1) can effectively reduce the running time, i.e., RL
1175 (resp. RP) runs always faster than EL (resp. EP) since it
1176 avoids generating many bad visualizations, as expected; (2)
1177 partial order-based approach runs faster than learning to
1178 rank model, i.e., EP (resp. RP) runs always faster than EL
1179 (resp. RL), because partial order can efficiently prune the
1180 bad ones while learning to rank must evaluate every visual-
1181 izations; (3) DEEPEYE can run to complete in seconds for
1182 datasets with reasonable size. Note that the performance
1183 will be further boosted by DBMSs (e.g., the database-based
1184 optimizations in SeeDB [2] and DeVIL [26]) or approximate
1185 query process technique [27].

11869 RELATED WORK

1187Visualization Recommendation. There has been work on rec-
1188ommending visualizations, such as SeeDB [2], Profiler [28],
1189and Voyager [29]. SeeDB quantifies an “interesting” visuali-
1190zation as the one that is largely deviated from a user given
1191reference, which is similar to find an outlier. Profiler is simi-
1192lar to SeeDB, which finds anomalies as candidate recommen-
1193dations. Voyager suggests visualizations based on statistical
1194properties of all visualizations.
1195Existing methods mainly use statistical properties (e.g.,
1196outliers) for visulization recommendations. Different from
1197them, (1) DEEPEYE tries to capture the human perception by
1198understanding existing examples using ML-based techni-
1199ques; and (2) DEEPEYE can accept keyword search to do rec-
1200ommendation instead of guessing the user’s preference.
1201Interactive Data Visualization Systems. DeVIL [26] employs
1202a SQL-like language to support interactive visualization.
1203zenvisage [3] tries to find other interesting data when the
1204users provide their desired trends or patterns. Lyra [30] is
1205an interactive environment that enables custom visualiza-
1206tion design without writing code. VisClean [21] allows users
1207to progressively improve the visualization quality by inter-
1208actively cleaning data errors. DataTone [31] provides a nat-
1209ural language interface for visual analysis. It accepts natural
1210language as input and iteratively interacts with the user to
1211produce one visualization.
1212DEEPEYE allows the user to specify their intent by key-
1213words and recommends a list of visualizations relevant to
1214the keywords in one-shot. Besides, the user can further
1215explore via faceted navigation.
1216Data Visualization Languages. There have been several
1217works on defining visualization languages. ggplot [32] is a
1218programming interface for data visualization. ZQL [3] bor-
1219rows the idea of Query-by-Example (QBE) that has a tabular
1220structure. Vega (https://vega.github.io/vega/) is a visualiza-
1221tion grammar in a JSON format. VizQL [33] is a visual query

Fig. 12. Efficiency of DEEPEYE.

Fig. 13. User study results. Fig. 14. Efficiency.
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1222 language that translates drag-and-drop actions into data
1223 queries and then expresses data visually.
1224 Our proposed language is a subset, but shares many fea-
1225 tures with the others. Our purpose to define a simple lan-
1226 guage is just to make our discussion easier.

1227 10 CONCLUSION

1228 We have presented DEEPEYE, a novel self-driving data visual-
1229 ization system. We leveraged machine learning techniques
1230 as black-boxes and expert specified rules, to solve three chal-
1231 lenging problems faced by DEEPEYE, namely, visualization
1232 recognition, visualization ranking, and visualization selec-
1233 tion. We also study the problem of how to compute diversi-
1234 fied top-k visualizations. In order to better capture a user’s
1235 query intent, we further extend DEEPEYE to be easily steer-
1236 able, by providing keyword search and faceted navigation.
1237 We have demonstrated its effectiveness and easy-to-use by
1238 using real-world datasets and use cases. Y. Luo and X. Qin
1239 are contributed equally to this research.

1240 ACKNOWLEDGMENTS

1241 This work was supported by NSF of China (61925205,
1242 61632016, 61521002), Huawei, TAL education, Tsinghua Uni-
1243 versity Initiative Scientific Research Program, and Beijing
1244 National Research Center for Information Science and Tech-
1245 nology (BNRist).

1246 REFERENCES

1247 [1] X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualizationmore
1248 efficient and effective: A survey,” The VLDB J., vol. 29, pp. 93–117,
1249 2019.
1250 [2] M. Vartak et al., “SEEDB: Efficient data-driven visualization recom-
1251 mendations to support visual analytics,” Proc. VLDB Endowment,
1252 vol. 8, pp. 2182–2193, 2015.
1253 [3] T. Siddiqui, et al., “Effortless data exploration with zenvisage: An
1254 expressive and interactive visual analytics system,” Proc. VLDB
1255 Endowment, vol. 10, pp. 457–468, 2016.
1256 [4] M. Vartak et al., “Towards visualization recommendation systems,”
1257 ACMSIGMODRec., vol. 45, pp. 34–39, 2017.
1258 [5] C. Binnig, L. D. Stefani, and T. Kraska et al., “Toward sustainable
1259 insights, or why polygamy is bad for you,” in Proc. 8th Biennial
1260 Conf. Innovative Data Syst. Res., 2017.
1261 [6] Y. Luo, X. Qin, N. Tang, and G. Li, “DeepEye: Towards automatic
1262 data visualization,” in Proc. IEEE 34th Int. Conf. Data Eng., 2018,
1263 pp. 101–112.
1264 [7] L. Grammel, M. Tory, and M.-A. Storey, “How information visuali-
1265 zation novices construct visualizations,” IEEE Trans. Vis. Comput.
1266 Graphics, vol. 16, no. 6, pp. 943–952, Nov./Dec. 2010.
1267 [8] C. J. C. Burges et al., “Learning to rank using gradient descent,” in
1268 Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 89–96.
1269 [9] C. J. C. Burges, K. M. Svore, Q. Wu, and J. Gao, “Ranking, boost-
1270 ing, and model adaptation,” Microsoft Research, Redmond, WA,
1271 Tech. Rep. MSR-TR-2008–109, 2008.
1272 [10] J. D. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Automatic
1273 presentation for visual analysis,” IEEE Trans. Vis. Comput.
1274 Graphics, vol. 13, no. 6, pp. 1137–1144, Nov./Dec. 2007.
1275 [11] J. D. Mackinlay, “Automating the design of graphical presentations
1276 of relational information,” ACM Trans. Graph., vol. 5, pp. 110–141,
1277 1986.
1278 [12] W. S. Cleveland, et al., “Graphical perception: Theory, experimen-
1279 tation, and application to the development of graphical methods,”
1280 J. Amer. Statist. Assoc., vol. 79, pp. 531–554, 1984.
1281 [13] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars,
1282 Computational Geometry: Algorithms and Applications. Berlin,
1283 Germany: Springer, 2008.
1284 [14] M. J. Kuby, “Programming models for facility dispersion: The p-
1285 dispersion d maxisum dispersion problems,” Geogr. Anal., vol. 19,
1286 pp. 315–329, 1987.

1287[15] R. Hassin, S. Rubinstein, and A. Tamir, “Approximation algo-
1288rithms for maximum dispersion,” Operation Res. Lett., vol. 21,
1289pp. 133–137, 1997.
1290[16] G. A. Miller, WordNet: An Electronic Lexical Database. Cambridge,
1291MA, USA: MIT Press, 1998.
1292[17] B. Li et al., “Scaling Word2Vec on big corpus,” Data Sci. Eng., vol. 4,
1293pp. 157–175, 2019.
1294[18] Q. Zhu, X.Ma, andX. Li, “Statistical learning for semantic parsing:A
1295survey,” Big Data Mining Analytics, vol. 2, no. 4, pp. 217–239,
1296Dec. 2019.
1297[19] Y. Luo et al., “DeepEye: Creating good data visualizations by key-
1298word search,” in Proc. Int. Conf. Manage. Data, 2018, pp. 1733–1736.
1299[20] X. Qin, Y. Luo, N. Tang, and G. Li, “DeepEye: Visualizing your
1300data by keyword search,” in Proc. 21st Int. Conf. Extending Database
1301Technol., 2018, pp. 441–444.
1302[21] Y. Luo, C. Chai, X. Qin, N. Tang, and G. Li, “Interactive cleaning
1303for progressive visualization through composite questions,” in
1304Proc. IEEE Int. Conf. Data Eng., 2020.
1305[22] M. Li, H. Wang, and J. Li, “Mining conditional functional depen-
1306dency rules on big data,” Big Data Mining Analytics, vol. 3, no. 1,
1307pp. 68–84, Mar. 2020.
1308[23] X. Zhang, G. Li, and J. Feng, “Crowdsourced top-k algorithms:
1309An experimental evaluation,” Proc. VLDB Endowment, vol. 9,
1310pp. 612–623, 2016.
1311[24] H. Valizadegan, R. Jin, R. Zhang, and J. Mao, “Learning to rank by
1312optimizing NDCG measure,” in Proc. 22nd Int. Conf. Neural Inf.
1313Process. Syst., 2009, pp. 1883–1891.
1314[25] C. L. A. Clarke et al., “Novelty and diversity in information
1315retrieval evaluation,” in Proc. 31st Annu. Int. ACM SIGIR Conf. Res.
1316Development Inf. Retrieval, 2008, pp. 659–666.
1317[26] E. Wu et al., “Combining design and performance in a data visual-
1318ization management system,” in Proc. 8th Biennial Conf. Innovative
1319Data Syst. Res., 2017.
1320[27] K. Li and G. Li, “Approximate query processing: What is new and
1321where to go?” Data Sci. Eng., vol. 3, pp. 379–397, 2018.
1322[28] S. Kandel et al., “Profiler: Integrated statistical analysis and visual-
1323ization for data quality assessment,” in Proc. Int. Work. Conf. Adv.
1324Vis. Interfaces, 2012, pp. 547–554.
1325[29] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
1326and J. Heer, “Voyager: Exploratory analysis via faceted browsing
1327of visualization recommendations,” IEEE Trans. Vis. Comput.
1328Graphics, vol. 22, no. 1, pp. 649–658, Jan. 2016.
1329[30] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization
1330design environment,” Comput. Graph. Forum, vol. 33, pp. 351–360,
13312014.
1332[31] T. Gao et al., “DataTone: Managing ambiguity in natural language
1333interfaces for data visualization,” in Proc. 28th Annu. ACM Symp.
1334User Interface Softw. Technol. 2015, pp. 489–500.
1335[32] H. Wickham, “ggplot2 - elegant graphics for data analysis,”
1336Springer, 2009, doi: 10.1007/978-0-387-98141-3.
1337[33] P. Hanrahan, “VizQL: A language for query, analysis and visual-
1338ization,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2006,
1339Art. no. 721.

1340Yuyu Luo received the bachelor’s degree in soft-
1341ware engineering from the University of Electronic
1342Science and Technology of China, China, in 2018.
1343He is currently working toward the master’s degree
1344in the Department of Computer Science, Tsinghua
1345University, Beijing, China. His research interests
1346include data cleaning and data visualization.

1347

1348Xuedi Qin received the bachelor’s degree in com-
1349puter science and technology from the Harbin Insti-
1350tute of Technology, China, in 2017. She is currently
1351working toward the PhD degree in the Department
1352of Computer Science, TsinghuaUniversity, Beijing,
1353China. Her research interests include data visuali-
1354zation and data exploration.

LUO ET AL.: STEERABLE SELF-DRIVING DATA VISUALIZATION 15

http://dx.doi.org/10.1007/978-0-387-98141-3


IEE
E P

ro
of

1355 Chengliang Chai received the bachelor’s degree
1356 in computer science and technology from the Har-
1357 bin Institute of Technology, China, in 2015. He is
1358 currently working toward the PhD degree in the
1359 Department of Computer Science, Tsinghua
1360 University, Beijing, China. His research interests
1361 include crowdsourcing data management and
1362 datamining.

1363 Nan Tang received the PhD degree from The Chi-
1364 nese University of Hong Kong, Hong Kong, in
1365 2007. He is a senior scientist at QCRI, Qatar. He
1366 has worked as a research staff member at CWI,
1367 The Netherlands, from 2008 to 2010. He was a
1368 research fellow at the University of Edinburgh,
1369 Scotland, from 2010 to 2012. His current research
1370 interests include data curation and data streams.

1371Guoliang Li received the PhD degree in com-
1372puter science from Tsinghua University, China, in
13732009. He is currently working as a professor with
1374the Department of Computer Science, Tsinghua
1375University, Beijing, China. His research interests
1376mainly include data cleaning and integration, spa-
1377tial databases, and crowdsourcing.

1378Wenbo Li is currently working toward the under-
1379graduate degree in the Department of Computer
1380Science, Tsinghua University, Beijing, China. His
1381research interest include data visualization.

1382

1383" For more information on this or any other computing topic,
1384please visit our Digital Library at www.computer.org/csdl.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING


