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ABSTRACT
Real-world data is dirty, which causes serious problems in (super-

vised) machine learning (ML). The widely used practice in such

scenario is to first repair the labeled source (a.k.a. train) data using

rule-, statistical- or ML-based methods and then use the “repaired”

source to train an ML model. During production, unlabeled target

(a.k.a. test) data will also be repaired, and is then fed in the trained

ML model for prediction. However, this process often causes a per-

formance degradation when the source and target datasets are dirty

with different noise patterns, which is common in practice.

In this paper, we propose an adaptive data augmentation ap-

proach, for handling missing data in supervised ML. The approach

extracts noise patterns from target data, and adapts the source data

with the extracted target noise patterns while still preserving su-

pervision signals in the source. Then, it patches the ML model by

retraining it on the adapted data, in order to better serve the tar-

get. To effectively support adaptive data augmentation, we propose

a novel generative adversarial network (GAN) based framework,

called DAGAN, which works in an unsupervised fashion. DAGAN
consists of two connected GAN networks. The first GAN learns the

noise pattern from the target, for target mask generation. The sec-
ond GAN uses the learned target mask to augment the source data,

for source data adaptation. The augmented source data is used to

retrain the ML model. Extensive experiments show that our method

significantly improves the ML model performance and is more ro-

bust than the state-of-the-art missing data imputation solutions for

handling datasets with different missing value patterns.
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1 INTRODUCTION
Machine learning (ML) techniques have been deployed in (almost)

all applications nowadays. Among all the techniques, supervised

ML, such as classification and regression, is the most prevalent [38].

Typically, a supervised ML application follows two basic steps. First,

data scientists or ML engineers prepare a labeled source dataset
(a.k.a. training dataset) and train a supervised learning model, e.g.,

a classifier, on the dataset. Then, the trained model will be deployed

in one or many production environments to make prediction on

the target datasets (a.k.a. test datasets) [27].
In practice, unfortunately, theMLmodels are difficult to maintain

in the production environments. One central challenge are unex-
pected errors in the target data, which is fed into the ML models

at prediction time [34, 41]. Among all the data errors [6], missing

data [40] is a serious problem that data scientists need to account

for everyday. There are a multitude of reasons why they occur:

ranging from human errors during data entry, incorrect sensor

readings, to software bugs in data science pipelines [16]. Moreover,

different from other types of errors (e.g., wrong names/addresses,

unnormalized values, and violations of integrity constraints) that

sometimes can be remained as they are, for ML modeling, these

missing data fields must be deleted or imputed first.

Consider an exemplary scenario as shown in Figure 1. Suppose

that a hospital trains a classifier that predicts cardiovascular disease

(i.e., cardio) for patients based on a labeled source dataset Ds,

which contains examination features, such as cholesterol (chol)
and glucose (gluc), patient-reported features, such as smoking

(smoke) and alcohol intake (alcohol), and demographics of patients,

such as age. We can observe that Ds contains missing values in

attributes smoke and alcohol, possibly because some patients may

not want to report their habits. However, when being deployed

in a production environment for prediction, the missing pattern

of the unlabeled target data Dt might be different, as shown in

Figure 1(b). There could be many reasons for such noise shift. For

example, the model is deployed to predict another patient cohort

or even in another hospital, where patients have missing values

in examination features instead of smoking or alcohol habits. Not

surprisingly, the model performance often degrades significantly

when encountering the noise shift in the target data.

Limitations of Missing Data Imputation Methods. To tackle

the problem, the existing works have proposed many methods for

imputing missing values [33], using mean imputation, regression

imputation, maximum likelihood, multiple imputation, etc. Ideally,
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age chol gluc smoke alcohol cardio
t1 25 1 NA 0 1 ?
t2 37 NA 3 0 0 ?
t3 40 3 NA 1 1 ?
t4 72 3 2 0 0 ?

age chol gluc smoke alcohol cardio
s1 30 2 3 0 0 no
s2 35 2 1 1 0 no
s3 50 3 3 NA 1 yes
s4 65 2 3 1 NA yes
s5 70 3 1 1 0 no

(a) A labeled source data (     )

(b) An unlabeled target data (     )

labels

no labels

Ds

Dt

Figure 1: Source and target with different missing patterns.

if both Ds and Dt can be imputed to be their ground-truth, we

can solve the problem. In practice, unfortunately, this is extremely

hard, because of the high cost of data cleaning [6]. Thus, in most

cases, practitioners will pick data imputation methods from the

decades-long effort on this field [40]. However, regardless of how so-

phisticated data cleaning techniques the practitioners may choose,

these techniques may have suboptimal results, i.e., the repaired

data is not the ground-truth. Subsequently, data imputation sep-

arately for Ds and Dt might cause an even bigger divergence on
data distributions, thus degrading the model performance. Consider

our previous example shown in Figure 1: an imputation method

may lead to a result that distribution of attribute gluc in target

Dt diverges from that in source Ds. This would result in a well-

recognized problem in ML, called dataset shift [9, 23, 41], which
may severely affect the performance of ML models.

Our Solution. Because finding the ground-truth for Ds and Dt

is practically infeasible, one alternative is to extract some “signal”

(or noise pattern) from the target, which can be used to adapt the

source and retrain the model, in order to better serve the target.

Based on this idea, we introduce a novel approach, dubbed adap-
tive data augmentation. It first adapts source data Ds to

˜D by

learning missing patterns from an unlabeled dataset in the target

and then “patches” the ML model by retraining the model on
˜D.

The objective of the adaptation is two-fold. First, the adapted

dataset
˜D should preserve the supervision signals in Ds, e.g., the

conditional feature distribution with respect to label remains con-

stant. For example, we do not want
˜D to contain tuples that violate

the potential correlation between features and the cardio outcome.

Second, the adapted dataset
˜D should be similar to our target

datasetDt. As we consider the case that source and target have the

same data distribution but different missing patterns, this essen-

tially means that the missing pattern between
˜D and Dt should

be as similar as possible.

The main challenges are to learn the (missing) noise pattern from

the target and adapt it to the source. We propose a novel generative

adversarial network (GAN) [18] based framework, namely DAGAN.
DAGAN is an end-to-end learning approach that consists of two

connected GAN networks. (i) Target mask generation: The first GAN
is to learn the noise pattern from the target, e.g., younger people

(i.e., age ≤ 40) tend to have more incomplete examination results in

attributes chol and gluc as shown in Figure 1. (ii) Source data adap-
tation: The second GAN uses the learned target mask to “translate”

the source data to an adapted data, which is indistinguishable from

the real target data. Another challenge is to apply the adapted data

to improve the ML model. We retrain the model using the adapted

data and get a “patched” model, to better serve the target data Dt.

We also study a more practical scenario with multiple dirty target

datasets {D1

t, . . . ,D
m
t }, each with a different noise pattern. We

propose a method to retrain one single patched model for all targets,

by using Group Distributionally Robust Optimization (GDRO) [39].

Contributions.We make the following notable contributions.

(1)We propose a novel framework to adaptively augment the source

data to be alike the target data and retrain an ML model using the

augmented source data, which can better serve the prediction on

the unseen target data (Sections 2 and 3).

(2) We propose a novel GAN-based approach DAGAN for adaptive

data augmentation (Section 4) and introduce effective model re-

training methods for patching the supervised ML model (Section 5).

(3) We experiment on real-world datasets and show that our adap-

tive data augmentation using DAGAN can improve the model per-

formance, and is robust for differentmissing data patterns, including

missing not at random (MNAR), missing at random (MAR), and

missing completely at random (MCAR) (Section 6).

2 PRELIMINARIES
Data Model. We consider a relational table D with attributes

A = {A1,A2, . . . ,AN } and with tuples {x (1),x (2), . . . ,x (M )}. In
particular, we consider both categorical (nominal) and numerical

(either discrete or continuous) attributes. We use x j to denote the

value of attribute Aj in tuple x (i.e., x j = x[Aj ]).

Missing Data.We consider that D contains missing values: each
tuplex may have some attributes that are not observed. To formalize

these missing values, like the existing works [22, 49], we introduce

a mask vectorm ∈ {0, 1}N to indicate which attributes in x are

observed (i.e., not missing): x j ∈ x is observed ifmj = 1 (mj is the

j-th entry ofm), otherwise x j is missing and is denoted as NA for
ease of presentation. Thus, our dataset D can be represented as

D = {(x (i),m(i))}. For a clearer notation, we use xд to denote the

complete (i.e., ground-truth) tuple without missing values, and x
to denoted the observed incomplete tuple, and we have:

x = ψ (xд,m) = xд ⊙m + NA · (1 −m), (1)

where ⊙ is element-wise multiplication and (1 −m) is the comple-

ment ofm. We consider three common missing mechanisms [49]

to model the conditional distribution p(m |xд) of mask given the

ground-truth data. (1) Missing completely at random (MCAR): mask

m is independent with the data, i.e., p(m |xд) = p(m); (2) Missing at
random (MAR): maskm is only dependent on the observed data, i.e.,

p(m |xд) = p(m |x); (3) Missing not at random (MNAR): maskm is

dependent on both observed and unobserved data.

Example 1. Consider Figure 1. We can observe that some tuples
contain missing values. For example, tuple s3 is incomplete as value
of smoke is missing. Thus, s3 corresponds to a mask vector m =

[1, 1, 1, 0, 1]. Suppose that the ground-truth of s3 is x = (50, 3, 3, 1, 1).
We represent the observed tuple corresponding to s3 as xobs = x ⊙
m + NA · (1 −m) = (50, 3, 3, NA, 1).



Remarks. In practice, one may use various feature generation meth-

ods to compute a numerical representation ofD, and the dimension

of x would be larger than the attribute number N . For example, we

can use one-hot encoding for categorical attributes, e.g., represent-

ing the values of chol as vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). In this

case, we will slightly modify Equation (1) to support attribute-wise
masking, i.e., retaining entries of x corresponding to an attribute, or

changing them all into NA. In this paper, for simplicity, we consider

that the dimension of x is N .

Supervised ML on Missing Data. Without loss of generality, we

consider a classification model f : X → Y that maps input tuple

x (i) in an input space X to a label from Y = {0, 1, . . . , L − 1}. A

typical classification pipeline consists of the following two steps.

The first step is to train the classification model f on labeled source
data Ds = {(x

(i)
s ,m

(i)
s ,y

(i))}, where y(i) andm(i)s are the label and

mask vector of tuple x (i)s respectively. The second step is to deploy

the model f in a production environment to serve some unlabeled
target data Dt = {(x

(i)
t ,m

(i)
t )}.

In practice, unfortunately, the performance of model f often

degrades significantly on the target data [31], caused by many

different real-world scenarios: (1) Ds and Dt come from different

domains; (2) Ds and Dt come from the same domain but with

different data distributions; or (3) Ds and Dt come from the same

domain, with the same (or similar) data distributions, but have

different noise (e.g., missing data) patterns; that is, there exists a

noise shift other than a data shift between the source and the target.

The common way to combat (1) is through transfer learning [8, 48]

or domain adaptation [17], and to deal with (2) is by collecting more

training examples, e.g., through active learning [27].

In this paper, we focus on case (3) by considering that sourceDs

and targetDt come from the same (ground-truth) data distribution,

but have different dirtiness, i.e., the presence of missing values inDs

and Dt have different patterns. This is a very common scenario in

practice, especiallywhenDs andDt are from different departments

or prepared by different engineering teams. Formally, we consider

the masksms andmt are from different mask distributions, while
the ground-truth data is from the same data distribution.

Recall that Dt represents the serving data that is fed into ML

models at prediction time. In the model (re)training step, if Dt is

known, we can directly use Dt to adapt source data Ds. Neverthe-

less, in practice,Dt is usually unseen until the model is deployed to

start prediction. Thus, we introduce another notationUt. The sce-

nario is that, although wemight not knowDt when (re)training the

model, it is usually not difficult to collect some historical dataUt in

the same target domain of Dt. Note thatUt does not have labels

needed for training. Provided with Ds andUt, next we formalize

the adaptive data augmentation problem.

Definition 1 (Adaptive Data Augmentation, ADA). Given
the labeled source data Ds = {(x

(i)
s ,m

(i)
s ,y

(i))} and the unlabeled
data in the target Ut = {(x

(i)
t ,m

(i)
t )}, the goal of adaptive data

augmentation is to adapt Ds with regard to Ut and generate an
augmented data ˜D, where a classifier f + trained on ˜D would have
low classification errors on the target data Dt, i.e.,

f + = argf minRDt
(f ) = argf min Pr(xt,y)∈Dt

[f (xt) , y] (2)

Example 2. Consider Figure 1. We want to train a classifier
f that predicts whether a patient has cardiovascular disease (i.e.,
cardio = 1). Specifically, source data Ds, which could be curated by
some research group, contains missing values on attributes smoke and
alcohol. In contrast, target data is collected by clinics, and thus has
a more sophisticated missing pattern that young patients tend to have
more incomplete examination results, e.g., chol and gluc, compared
with old ones. Due to the “shift” of missing patterns, classifier f may
not perform well on Dt. To address this difficulty, we first adapt Ds

with regard to historical unlabeled data in targetUt to generate an
augmented data ˜D. Then, we patch f to a new classifier f + such that
f + has low classification errors on the unseen target data Dt.

Note that, in the ADA problem, we consider the case of “one

source, one target”. It is natural to extend the problem to a

more practical “one source, multiple targets” scenario: classifier

f trained on the source data is deployed to serve multiple test sets
{D1

t, . . . ,D
m
t } and each Di

t has a different noise pattern.

Example 3. Consider our example shown in Figure 1. While a clas-
sifier f is trained on the well-curated data Ds by a research group,
f could be used in multiple hospitals with different missing patterns.
For example, some hospitals may have incomplete demographics in-
formation (e.g., age) while others may have missing values in smoke
and alchol, which may be caused by the difference in workflow and
equipments in the hospitals.

A straightforward solution to handle “one source, multiple target”

is to apply the above ADA for multiple times and obtain multiple

“patched” models f +
1
, . . . , f +m , each being applied in its correspond-

ing target dataset. However, this method would bring more mainte-

nance costs on model training, tuning and deployment. Thus, we

study a more appealing alternative to retrain f to a single classifier

f + for multiple target datasets. To this end, we define the adaptive

data augmentation problem with multiple target datasets as follows.

Definition 2 (Multi-Target Augmentation, Multi-ADA).

Given a labeled source data Ds and a collection of unlabeled target
datasets {U1

t ,U
2

t , . . . ,U
m
t }, Multi-ADA generates an augmented

dataset ˜D = ˜D1 ∪ ˜D2 ∪ . . . ∪ ˜Dm , where ˜Di is generated by
adapting Ds with regard toUi

t. The objective is to train a classifier
f + on ˜D and minimize the classification errors on the unseen target
data Dt = D

1

t ∪ . . . ∪ D
m
t .

We will show that one classifier f + learned on the augmented

data with consistency regulation techniques in Section 5 can also

achieve superior performance, compared with multiple classifiers.

Generative Adversarial Networks (GAN). GAN [18] is a gener-

ative model that tries to create fake data that resembles real data.
GAN achieves this by pairing a generator G, which learns to

produce near-real data, with a discriminator D, which learns to

distinguish real data from the fake data generated by the gener-

ator. The generator never sees any real data, but tries to fool the

discriminator that it can generate real data. To approximate the

real data distribution p(x), G takes a variable sampled from a noise

distribution (e.g., a Gaussian distribution) p(z) as input and outputs
a fake dataG(z). The objective of discriminator is to distinguish the

fake data G(z) from the real data x sampled from p(x) and guides

the generator to generate more realistic data.
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Figure 2: An overview of adaptive data augmentation.

3 SOLUTION OVERVIEW
Let’s start simple by considering a binary classification problem that

classifies data points to two groups, a true-group and a false-group.
Figure 2 gives an overview of our proposed framework.

Input. We have a labeled source Ds, where the true (resp. false)

data points are in the area of “+”, the green circles (resp. “−”, the

pink triangles).

Output. Here, the “output” refers to using f to predict on the test

data Dt. The model f may cause both false positives (two red

triangles) and false negatives (two light green circles).

Our proposal is a framework for adaptive data augmentation and

model retraining. Besides Ds, it also takes as input an unlabeled

target dataUt. It then learns to augment Ds by learning fromUt,

where the augmented source will be used to retrain the model and

then predict on Dt.

Adaptive Data Augmentation (DAGAN). It also consists of two

components: target mask generation and source data adaptation.
Target mask generation is to learn the noise pattern from the

unlabeled target Ut. Source data adaptation is to augment the

source data Ds using the learned target (noise) mask.

To cope with the above two tasks, we use two GANs. One GAN,

shown as ⟨Gm,Dm⟩, is to learn the missing value distribution of

the target. The other GAN, shown as ⟨Gx ,Dx ⟩, is trained to learn

the observed data distribution to augment the source.

As shown in Figure 2 “Augmented Data”, each data point in the

source data will be augmented by applying the learned target mask,

which will result in a new data point. Moreover, it also shows that

by doing the above data augmentation, if we retrain the model by

considering these newly augmented data points, the model f , if
being retrained, is expected to better fit the augmented data, as

indicated by the dotted line.

Model Patching through Model Retraining. It will retrain the

model f using the augmented and labeled source data. In particu-

lar, it also contains two components: Cross Entropy Loss for better
modeling the adapted training data when there is only one target

dirty dataset, and Group-aware Loss for retraining when there are

multiple dirty target datasets (see more details in Section 5).

The retrained model f + is shown as a bold line in the “output”.

Output - Model Prediction on Test Data. After being retrained,

f + can correctly predict the four wrong predictions made by the

previous model f , that is, f + can correctly predict the two true pos-

itives (two pink circles) and two true negatives (two pink triangles)

that f fails to predict. Note that, the missing data in target dataDt

will be imputed before being predicted.

4 GAN-BASED DATA AUGMENTATION
We first present the general architecture of DAGAN (Section 4.1),

and describe the design details of target mask generation and source
data adaptation (Section 4.2). We close this section by discussing

the adversarial training algorithm of DAGAN (Section 4.3).

4.1 Architecture of DAGAN
The architecture of DAGAN is shown in Figure 3. It takes a sample

of labeled source data Ds = {(xs,ms)} and a sample of unlabeled

target data Ut = {(xt,mt)} as input. The goal of DAGAN is to

“adapt” each tuple (xs,ms) in the source Ds into a synthetic tuple
(x̃t,m̃t). In particular, we want the synthetic tuple can follow target

data distribution p(x̃t,m̃t). However, directly capturing p(x,mt) is

very challenging, as it may be a complexmixture of data distribution

and noise distribution: the noise may be either independent (i.e.,

MCAR) or dependent (i.e., MAR and MNAR) of the data. Thus, we

first deduce p(x,mt) as

p(xt,mt) = p(mt |x) · p(x), (3)

where x is the observed data in the target. Based on this, we propose

the following two essential tasks in DAGAN.

(1) Data distribution preservation: The first task aims to learn ob-

served data distribution p(x ) that ensures that the fake data should
be “similar” to the original source data. Formally, the synthetic tuple

x̃t should preserve the data distribution. For example, we do not

want the adapted data to contain tuples that violates the potential

correlation between features and the cardio outcome.

(2) Missing pattern adaptation: This task aims to learn the underling

missing pattern in the target. For example, we want Gm to learn

that the target data as shown in Figure 1 has a missing pattern

that young people (i.e., age ≤ 40) tend to have missing values on

attributes chol and gluc. To this end, it aims to recover p(mt |x) to
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Figure 3: The architecture of DAGAN.

ensure that the fake data should be adapted to have the synthetic

mask m̃t that approximates the target missing pattern.

To achieve the aforementioned two properties, DAGAN intro-

duces two generator-discriminator pairs ⟨Gm,Dm⟩ and ⟨Gx ,Dx ⟩,

which are designed for masks and data respectively. The red line

represents the process of Gm and Dm , where solid and dotted

lines respectively represent the forward and backward passes. The

green line represents the process of Gm , Gx and Dx . We present

an overview of the two generator-discriminator pairs as follows.

Target Mask Generation. To enable our classifier to be familiar

with the target data, we explicitly model the missing data process

using a target mask generator. Since the target masks can be ob-

served fromUt, we use a GAN model to estimate the target mask

distribution. The key challenge here is that the missing pattern,

i.e., mask distribution, may be dependent on the observed data. To

address the challenge, as shown in the top of Figure 3, we utilize

two players, i.e., a mask generator Gm and a mask discriminator

Dm . We use conditional GAN [30] in this phase. Given an observed

data x as condition, mask generatorGm transforms a random noise

σ and to a fake mask m̃t corresponding to x . On the other hand,

mask discriminator Dm is learned to distinguish m̃t from a real

target maskmt fromUt, and guides Gm to near-real target masks.

Source Data Adaptation. To augment source dataDs, we train an

adaptive data generator that adversarially “translates” each source

tuple (xs,ms) into a fake target tuple (x̃t,m̃t), which is then com-

pared with a real target tuple sampled fromUt. Same as the condi-

tional GAN described above, it consists of a data generatorGx and a

data discriminator Dx . Data generatorGx takes source data xs and
source maskms as conditions to transform a random noise zx into

a fake data x̃t, which is then masked by the generated mask m̃t via

functionψ in Equation (1). DiscriminatorDx takes a real target data

xt and the generated target data x̃t as input, and predicts whether

x̃t is real or fake. By utilizing the adversarial training process, data

generator Gx is improved to output fake tuples to fool Dx .

Example 4. After the adversarial training process of DAGAN,
we utilize the optimized generators Gm and Gx for adaptive data
augmentation, as illustrated in Figure 4. More specifically, we first use
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Figure 4: Adaptive data augmentation using DAGAN.

mask generator Gm to output generated masks that explicitly model
the missing pattern of the unlabeled target dataUt. Then, we feed the
labeled source data to data generatorGx , and apply theψ function to
the output of Gx with generated masks to obtain the generated data
where each source tuple is translated into a fake tuple that preserves
source data distribution and has target missing patterns.

4.2 Design Details of DAGAN
This section elaborates the two generator-discriminator pairs

⟨Gm,Dm⟩ and ⟨Gx ,Dx ⟩, which are respectively designed for target

mask generation and source data adaptation.

Target Mask Generation. Recall that the difficulty of target mask

generation is that the missing pattern, i.e., mask distribution, may

be dependent on the observed data, given complicated missing

mechanisms. In our previous example as shown in Figure 1, in the

target data, the younger patients tend to have missing values in

medical examinations. Thus, we feed this information to our mask

generator Gm and would like Gm to be capable of learning such

distribution of missing values. To achieve this objective, we im-

plement mask generator Gm by improving the simple form of Gm
in Figure 3 and introducing conditional GAN. In particular, mask

generator Gm (σ ,x) takes as input a random noise σ ∈ Rσ and a

sampled tuple to generate synthetic mask samples Gm (σ ,x) ∈ RN .

On the other hand, mask discriminator Dm distinguishes the gener-

ated masks by comparing the masks with real masks sampled from

the target data. Specifically, Dm (m,x) takes a generated/real target
maskm and the tuple x as input and determines the probability

thatm is sampled from pϕt
(m), i.e., not generated from Gm . To

train Gm and Dm , we follow Wasserstein GAN (WGAN) [7] and

optimize them adversarially using the following loss function,

Lm (Dm,Gm ) = E(xt,mt)∼Ut
[Dm (mt,xt)]

− Eσ∼p(σ ),(xt,mt)∼Ut
[Dm (Gm (σ ,xt),xt)]

(4)

Source Data Adaptation. The objective of source data adaptation
is to adapt each tuple (xs,ms) in Ds into a fake tuple (x̃t,m̃t)

that satisfies the aforementioned label preserving and missing pat-

tern adaptive properties. To this end, we adopt a conditional GAN

architecture [30] that consists of a data generator Gx and a data
discriminator Dx : Gx takes source tuples as condition and adapt

the tuples to mimic the missing pattern of target data Ut, while

Dx distinguishes the adapted tuples with the real ones.

Formally, data generator Gx (z,xs,ms) takes as input a random

noise z ∈ Rz and a source tuple (xs,ms). It first generates an

intermediate complete tuple x̃ , and then masks x̃ by applying the



synthetic mask m̃t generated by our mask generator Gm , i.e.,

x̃t = ψ (x̃,m̃t)

= Gx (z,xs,ms) ⊙ m̃t + NA · (1 − m̃t)
(5)

Data discriminator Dx is designed to distinguish the synthetic

data with real data sampled from target data. We simultaneously

consider the above Gx and Dx in the training process. First, we

sample source data xs and obtain an intermediate tuple x̃ usingGx .

Next, we take x̃ as the input of Gm to generate the corresponding

mask m̃t, and then we synthesize a fake target tuple x̃t by masking

x̃ with m̃t. Finally, the discriminator Dx compares the fake tuple

x̃t with a real observed one sampled from target dataUt.

We can optimize Gm jointly with Gx and Dx according to the

loss function,

Lx (Dx ,Gx ,Gm ) = E(xt ,mt)∼Ut [Dx (xt)]

− Ez∼p(z ),(xs ,ms)∼Ds [Dx (ψ (x̃s,Gm (σ , x̃s)))], x̃s=Gx (z , xs,ms)
(6)

Note that the losses in Definitions (4) and (6) use the loss function

of Wasserstein GAN [7]. Overall, we combine the two objectives in

our adversarial training process, i.e.,

min

Gx
max

Dx
Lx (Dx ,Gx ,Gm ) (7)

min

Gm
max

Dm
Lm (Dm,Gm ) + Lx (Dx ,Gx ,Gm ) (8)

Neural Network Architectures. The works [14, 15] have shown
that LSTM, a representative variant of RNN, can achieve superior

performance when used in generators for relational data. The ba-

sic idea is to formalize record synthesis as a sequence generation
process: a record x is modeled as a sequence and each element of

the sequence is an attribute x j . Then we use LSTM to generate x at

multiple timesteps, where the j-th timestep is used to generate x j .
Formally, let hj and f j respectively denote the hidden state and

output of the LSTM at the j-th timestep. Then, we have

hj+1 = lstm(z, f j ,hj ),

f j+1 = tanh(FC(hj+1)), (9)

where h0
and f 0

are initialized with random values and FC denotes
fully-connected layer. Next, we compute attribute x j using an out-

put layer. For discriminators, we follow the original GAN [18] to use

multi-layer perceptron (MLP). More details of the neural network

architectures can be referred to our technical report [15].

4.3 Training Algorithm of DAGAN
Based on the above objectives, we train DAGAN using the process

shown in Algorithm 1. In each training iteration, we follow Wasser-

stein GAN [7] to first update the parameters of discriminators Dm
and Dx and then train the generators Gm and Gx .

For the mask discriminator Dm , we treat it as a normal discrimi-

nator of conditional GAN. Dm maximizes the output score of the

input (mt , xt ) sampled from the distribution of target data p(xt ,mt )

and minimizes the output score of the input (m̄t , xt ) whose mask

m̄t is generated by the mask generator Gm (lines 3–6). The data

discriminator Dx will separately take a real target tuple xt and a

synthetic target tuple x̂s as inputs and try to maximize the differ-

ence between the output scores of them (lines 7–11).

Algorithm 1: The Pseudo-code of DAGAN Training

Input: parameters θдx , θdx of Gx and Dx ; parameters θдm , θdm of

Gm and Dm ; T : number of training iterations

Output: The learned models

Initialize parameters θдx ,θdx for Gx ,Dx and θдm ,θdm for Gm ,Dm1

for training iteration t1 = 1, 2, . . . ,Tд do2

/* Training discriminator Dm */

Randomly sample σ and (xt,mt) from noise prior p(σ ) and3

target data p(xt,mt);

Compute Ldm using Gm and Dm with Eq. 4;4

Compute the gradients ∇θdm
Ldm ;5

Update θdm using Root Mean Square Prop gradient descent.6

/* Training discriminator Dx */

Randomly sample σ and z from noise prior p(σ ) and p(z );7

Randomly sample (xt,mt) and (xs,ms) from target data8

p(xt,mt) and source data p(xs,ms);

Compute Ldx using Gx , Gm and Dx with Eq. 6;9

Compute the gradients ∇θdx
Ldx ;10

Update θdx using Root Mean Square Prop gradient descent.11

/* Training generators Gm and Gx */

Randomly sample σ and z from noise prior p(σ ) and p(z );12

Randomly sample (xt,mt) and (xs,ms) from target data13

p(xt,mt) and source data p(xs,ms);

Compute Lдx using Gx , Gm and Dx with Eq. 6;14

Compute gradients ∇θдx Lдx ;15

Update θдx using Root Mean Square Prop gradient descent.16

Compute Lm using Gm and Dm with Eq. 4;17

Lдm ← Lдx + Lm ;18

Compute gradients ∇θдm Lдm ;19

Update θдm using Root Mean Square Prop gradient descent.20

return Gx , Dx , Gm , Dm21

As for training the generators, we generate a fake target data x̃t
using Gx and Gm , then maximize the output score of the Dx . We

also generate a fake target mask m̃t using Gm , and maximize the

output score of the Dm (lines 12–20). For the data generator Gx ,

although we cannot obtain the distribution of clean data, we can

indirectly guide Gx by inspiring it to make the generated target

data more realistic. For the mask generator Gm , we can directly

guide it to approximate the distribution of missing pattern by using

Dm . So the gradient ofGx is only computed byDx , but the gradient

of Gm can be computed by Dx and Dm together.

5 MODEL RETRAINING
5.1 Model Retraining for ADA
Model retraining is simple for the basic ADA problem with sin-

gle target dataset. Specifically, we denote augmented data as D̃ =
{xi ,yi }, which is generated by adapting source data Ds into unla-

beled target dataUt. We first apply a simple imputationmethod for

D̃, i.e., imputing numerical attributes with the mean of observed val-

ues, and replacing missing values of each categorical attribute with

a special category (such as zero). Note that such simple imputation

method is much more efficient than the sophisticated imputation

solutions [35, 42, 49]. After that, we train our classifier f on the

augmented data using the empirical risk minimization (ERM) [43]



Algorithm 2: Model Retraining for Multi-ADA using GDRO

Input: b : batch size; α : learning rate; T : number of training iterations

Output: fθ : classifier;
Initialize parameters θ (0) for fθ1

for training iteration t1 = 1, 2, . . . ,T do2

Sample b samples {x (i )m , y(i )m }bi=1
from each subgroup

˜Dm3

Loss ← −Inf4

for samples from each subgroup do5

m_loss ← L(ym , fθ (xm ))6

if m_loss > Loss then7

Loss ←m_loss8

д ← ∇θ Loss9

θ (t ) ← θ (t−1) − α · adam(θ (t−1), д)10

return fθ11

criterion, i.e., optimizing the following loss function,

L(θ ) = E
(xi ,yi )∈ ˜D

[L(fθ (xi ),yi )], (10)

where L is the loss between a predicted label fθ (xi ) and ground-

truth yi . We use the widely-adopted cross entropy function to im-

plement L in our experiments.

5.2 Model Retraining for Multi-ADA
A straightforward approach to model retraining for Multi-ADA is to

use the ERM-based method [43] from basic ADA. More specifically,

consider the augmented data
˜D = ˜D1 ∪ . . . ∪ ˜Dm

, where each

˜Di
is generated by adapting source data Ds into unlabeled data

Ui
t. We do not differentiate the augmented data corresponding

to various targets, and simply train our classifier f + on ˜D using

the loss function in Equation (10). Finally, we apply f + on various

target datasets D1

t, . . . ,D
m
t . For ease of presentation, we call each

Di
t as a subgroup of the total target data Dt.

Challenge of Subgroup Performance Gap. However, we have
an supervising observation from our experiments that the above

approach has inferior performance compared with multiple classi-

fiers, each of which is retrained on Di
t. A deeper analysis shows

that f + encounters a difficulty of subgroup performance gap. More

specifically, as observed from Figure 11 (for details please refer

to Section 6.6), the losses of different test subgroups are very di-
verse: with the increase of training epochs, although losses of some

subgroups are optimized, there still exist many subgroups with

large losses. The main reason is that the ERM criterion ignores the

difference among subgroups, and tends to optimize the losses of

“easy” subgroups with larger gradients. In contrast, for the “diffi-

cult” subgroups with smaller gradient, even when their losses are

significant, they may not get chance to be optimized by the ERM

approach.

Subgroup-aware Model Retraining. To address the above chal-

lenge, we adopt a simple yet effective optimization technique: group

distributionally robust optimization (GDRO) [39]. Different from

ERM which aims to optimize the overall loss, GDRO considers to

optimize the subgroup with the largest loss iteratively. Algorithm 2

shows the pseudo code of GDRO. In each iteration, it finds the

subgroup with the largest loss to optimize, i.e.,

L(θ ) = max

m
E
(xi ,yi )∈ ˜Dm [L(fθ (xi ),yi )], (11)

Table 1: Dataset statistics: #Rec (records), #N (numerical at-
tributes), #C (categorical attributes), and #L (unique labels).
Dataset Area #Rec #N #C #L Label Distribution
Ipums Social 16329 16 43 7 65:9:11:5:6:3:1

Okcupid Social 50789 3 13 3 7 : 2 : 1

Welfare Financial 20309 5 0 2 1.0 : 1.2

EyeState Health 14977 14 0 2 1.0 : 1.3

Adult Social 13567 6 8 2 1.0 : 3.0

6 EXPERIMENTS
6.1 Setup
Datasets. We utilize both real-world datasets with (i) real missing

values and (ii) datasets with injected missing values. The statistics

of tested datasets are summarized in Table 1. Specifically, we use

the following three real-world datasets.

1) Ipums is the Public Use Microdata Sample (PUMS) census

data from the Los Angeles and Long Beach areas [3]. Following the

common practice in ML, we partition the dataset into source and

target based on the timestamp and train a classifier for predicting

attribute MovedIn. In particular, we use the tuples in 1998 as the

source and tuples in 1999 as the target. The source has 17 attributes

with missing rates ranging from 1.8% to 71.0%, and the target has

18 attributes with missing rates ranging from 1.9% to 69.8%.

2) Okcupid contains user profile data for San Francisco OkCu-

pid users [4]. It includes people within a 25 mile radius of San

Francisco, who were online in 2011. We train a classifier to pre-

dict the job of a user from three categories, STEM, non-STEM and

Student, where STEM stands for jobs in computer/hardware/soft-

ware/science/tech/engineering. Like the Ipums dataset, we use the

data with last online time before 2012-06-27 18:04 as the source

data, and use the rest as the target data. The source has 13 attributes

with missing rates ranging from 0.1% to 74.8%, and the target has

13 attributes with missing rates ranging from 0.04% to 80.1%.

3) Welfare contains financial statistics of 4180 foundations in

China from 2005 to 2016 [5]. We train a classifier for predicting

the welfare expense of each foundation in the future. To this end,

we create the source data with tuples before 2011 and train the

classifier on the source. Then, we deploy the classifier on the target

data with tuples after 2011. The source has 2 attributes with missing

rates 0.1% and 34.6%, and the target has 5 attributes with missing

values with rates ranging from 0.1% to 15.1%.

Please find more details about the missing value of each attribute

in our technical report [24].

Moreover, to comprehensively evaluate approaches under dif-

ferent missing value patterns, like the existing works [45, 49], we

manually inject missing values to clean datasets. We use the follow-

ing two representative ML datasets, which are downloaded from

the UCI Machine Learning Repository.

4) EyeState contains records obtained from one continuous

EEG (electroencephalogram) measurement with the Emotiv EEG

Neuroheadset [2]. Specifically, each record has multiple attributes

corresponding to various metrics measured by the Neuroheadset,

and all the attributes in the dataset are numerical. Moreover, a label

corresponding to the eye state is associated with each record, which

is one of two possible values, 1 (eye-closed) and 0 (eye-open).



5) Adult contains personal information from the 1994 US cen-

sus [1]. Each record in the dataset corresponds to a person with

mixed data types, i.e., 8 categorical and 6 numerical attribute values.

The attribute income is used as the label to predict whether the per-
son has income larger than 50K per year (positive) or not (negative).

Note that, on the full Adult dataset, baselines would incur high

runtime cost. For example, MICE and MISF respectively use more

than 2 hours and 10 hours to complete missing value imputation. In

contrast, ourDAGAN approach only takes 40 minutes for both GAN

learning and data adaptation. To favor the baselines, we randomly

sample a subset of records from the dataset.

Missing Value Injection. We consider the following settings

where the source and the target have different missing patterns. (i)

The NoOverlap setting considers missing values occur in different

sets of attributes in source and target data. We apply a mechanism

that injects missing values to the first half of attributes in the source,
and injects missing values to the last half of attributes in the target.

(ii) The Overlap setting injects missing values to the same set of

attributes in the source and the target with different missing rates.

We consider variouswidely-recognizedmechanisms for injecting

missing values, namely MCAR, MAR and MNAR, in the aforemen-

tioned settings. MCAR is the simplest mechanism with a strong

assumption that missing values is independent with the data. In

contrast, MAR and MNAR are more realistic as they consider that

missing values depend on the underlying data.

1)Missing Completely at Random (MCAR): Given a missing rate p
and a set of attributes in a dataset, the MCAR mechanism changes

every attribute of each tuple in the dataset to the missing value NA
completely at random with probability p.

2)Missing at Random (MAR). Different fromMCAR, MAR consid-

ers that the missing is not completely at random, but is dependent

on the values of some observed attributes. Specifically, we follow

the method in [45] that first selects a numerical attribute, denoted

asAR , and sorts the tuples in ascending order ofAR . Next, we inject

missing values for each of the other attributes A: given a missing

rate p, we randomly select a continuous range of tuples with size

p ·M (M is the number of tuples). For each selected tuple, we replace

the corresponding value of A with missing value NA.
3)Missing Not at Random (MNAR).MNAR considers data missing

dependent on both observed and unobserved attributes. We also

follow the method in [45]. For each attributeA, we sort all the tuples
in ascending order of A and then choose the largest or smallest p
proportion of the tuples to inject missing values.

Evaluation Framework.We implement the DAGAN framework

as shown in Figure 3, using PyTorch. All the code and datasets in

our experiments are public at Github
1
. To evaluate the performance

of DAGAN, we split each datasetD into source dataDs, unlabeled

data in targetUt and unlabeled test dataDt with the ratio of 4:5:1.

Then, we apply the missing value injection methods, which are

described previously, to the datasetsDs,Ut andDt. Next, we train

DAGAN by using the source data Ds and unlabeled data Ut to

obtain the optimized parameters of discriminators and generators

as follows. We first perform hyper-parameter search, which will be

described later, to determine the hyper-parameters of the model.

Then, we run a training algorithm for parameter optimization and

1
https://github.com/ruc-datalab/dagan

adapt the source data Ds to the augmented data
˜D. Then, we train

our classifier f + on ˜D and apply f + toDt. We use F1 score, which

is the harmonic average of precision and recall, as the evaluation

metric for the classifier. In particular, for binary classifier, we mea-

sure the F1 score of the positive label. For multi-label classifier, we

measure the weighted F1 across different labels.

Baseline Approaches. We compare our GAN-based framework

DAGAN with state-of-the-art data imputation methods. For a fair

comparison, we first use both source data Ds and unlabeled target

dataUt to train a data imputation method, and use test data Dt

to train its imputation method. Then, we use the corresponding

methods to impute Ds and Dt respectively. After that, we train

our classifier on the imputed Ds and evaluate the classifier’s per-

formance on the imputed Dt. We consider the following three

state-of-the-art data imputation methods.

(1) Generative Adversarial Imputation Nets (GAIN) [49] is a
recently proposed generative method for data imputation. It first

trains a GAN model to approximate the data distribution, and then

use the model to impute missing values. We also download the

source code of GAIN from https://github.com/jsyoon0823/GAIN

and use the default parameters provided by the authors.

(2) MissForest (MISF) [42] is a nonparametric, discriminative im-

putation method based on random forest. It first uses the observed

data to train a random forest classifier, and then uses the classifier

to predict the missing values. We use their original implementation

of MISF from https://github.com/stekhoven/missForest.

(3)Multiple Imputation with Chained Equations (MICE) [35]
is one of the most recognized imputation methods in statistics and

data science. It is also a discriminative imputation method that

predicts missing values from observed data. Different from MISF, it

is a parametric method that uses classification and regression model

for imputation. We use their original implementation of MICE from

https://github.com/amices/mice.

Classification Model. For the classification model, we use the

representative deep learning model, multi-layer perceptron (MLP)

with two hidden layers with neuron numbers 100 and 50. We use

ReLu and sigmoid as activation functions for hidden layer and

output layer respectively. During model training, we use binary
cross-entropy as the loss function, and use Adam [19] as the opti-

mizer with the default learning rate 0.01. Note that the selection of

classification models is orthogonal to our paper, and we will discuss

more sophisticated classification models in the future work.

Hyper-parameter Search. Hyper parameter search is crucial for

deep learning models. For training the GAN-based model in DA-
GAN, we adopt the method in a recent empirical study for GAN

models [26] for hyper-parameter search. We first generate a set

of candidate hyper-parameter settings, and train the models for

several times, each of which corresponds to a hyper-parameter

setting. Then, we select the models with the best performance on

the validation set. We also perform hyper-parameter search for

our classifier as follows. We first sample a subset from the training

dataset as validation set, and then train a classifier f on the remain-

ing data. We divide the training iterations evenly into 10 epochs and

evaluate the performance of the model snapshot after each epoch

on the validation data. We select the model snapshot with the best

https://github.com/jsyoon0823/GAIN
https://github.com/stekhoven/missForest
https://github.com/amices/mice


Table 2: Comparison on Real-World Datasets on F1 scores.
Dataset GAIN MISF MICE DAGAN
Ipums 0.709 - 0.723 0.768
Okcupid 0.597 0.649 0.663 0.681
Welfare 0.477 0.536 0.579 0.652

performance. In particular, we use full batch for all experiments

and set 2000 as the number of maximum iterations, so the only pa-

rameter we need to tune is the coefficient of L2 normalization. The

candidate coefficients set is {0, 0.001, 0.01, 0.1}. For each candidate

coefficient, we use it to train a model and evaluate it on validation

data. We select the coefficient with the best performance.

All experiments are conducted on a Ubuntu 16.04 server with

62TB disk, 40 CPU cores (Intel(R) Xeon(R) Gold 6138 CPU @

2.00GHz), one GPU (NVIDIA TITAN V) and 512GB memory, and

the version of Python is 3.6.12.

6.2 Evaluation on Real-World Datasets
We first evaluate the performance of DAGAN on real-world datasets

with missing values. Specifically, we adopt an imputation approach

to respectively impute source and test data. To make a fair compar-

ison, when imputing source data, we also leverage the unlabeled

target data for training the imputation model. After obtaining the

imputed source and test data, we train our classifier on the source

data and evaluate performance of the classifier on the test data.

Table 2 summarizes the result. It clearly shows that DAGAN
outperforms existing methods when handling noise shift between

source and target on these real-world datasets. The performance

improvement is attributed to our adaptive data augmentation ap-

proach, which tries to avoid the dataset shift between the source and

the target data. Note that MISF fails on the Ipums dataset because
its R-based implementation cannot handle categorical attributes

with more than 53 categories, as noted in its instruction.

6.3 Effect of Adaptive Data Augmentation
To provide in-depth analysis on adaptive data augmentation, we

consider the datasets with injected missing values. Specifically, we

consider the NoOverlap setting as described in Section 6.1. For the

source data, we fix the missing rate as 0.6 and use MCAR to inject

missing values to the first half of attributes. For the target data, we

vary missing ratep from the values in {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8},

and only inject missing values to the last half of attributes. Note

that we observe similar results on other missing injection settings.

We omit the results due to space limit.

The key question we answer is whether an adaptively augmented
source data is better a fully clean source data, when the target data

is dirty. To this end, we consider two alternatives. (1) ClnSrc uses

a perfectly clean source data to train a classifier, and evaluates the

classifier on the dirty test data. (2) AdaSrc first adapts the source
data with the target noise pattern based on the injected missing

pattern in the target data. Then, it trains a classifier on the adapted

source data and evaluates the classifier on the test. Table 3 re-

ports the experimental results under missing patterns MCAR, MAR

and MNAR. One interesting observation is that, although ClnSrc
achieves better performance than AdaSrc under small missing rates,

AdaSrc outperforms ClnSrc with larger margin on F1 with the in-

crease of missing rate. For example, consider the EyeState result

Table 3: Evaluating Effect of Data Adaptation on F1 scores.
(a) EyeState Dataset

Missing
Rate

MCAR MAR MNAR
AdaSrc ClnSrc AdaSrc ClnSrc AdaSrc ClnSrc

0.2 0.647 0.655 0.665 0.695 0.668 0.681
0.3 0.676 0.650 0.641 0.680 0.699 0.716
0.4 0.644 0.625 0.622 0.681 0.686 0.698
0.5 0.631 0.563 0.660 0.544 0.665 0.690
0.6 0.618 0.554 0.638 0.602 0.666 0.622

0.7 0.570 0.485 0.669 0.496 0.620 0.610

0.8 0.576 0.494 0.626 0.538 0.630 0.585

(b) Adult Dataset

Missing
Rate

MCAR MAR MNAR
AdaSrc ClnSrc AdaSrc ClnSrc AdaSrc ClnSrc

0.2 0.615 0.616 0.621 0.610 0.664 0.593

0.3 0.629 0.569 0.621 0.563 0.623 0.578

0.4 0.632 0.581 0.643 0.585 0.617 0.593

0.5 0.623 0.539 0.603 0.590 0.576 0.546

0.6 0.579 0.582 0.616 0.645 0.600 0.592

0.7 0.589 0.464 0.593 0.512 0.595 0.492

0.8 0.596 0.471 0.614 0.561 0.588 0.570

in Table 3(a). Under the MCAR setting, only when missing rate

p = 0.2, ClnSrc is slightly better than AdaSrc, but under other
missing rates, AdaSrc achieves 3%-18% improvement on F1. Sim-

ilarly, under the MAR and MNAR settings, AdaSrc outperforms

ClnSrc for missing rates p > 0.4 and p > 0.5 respectively. On the

Adult dataset, AdaSrc is much better and outperforms ClnSrc in
most cases.

We analyze the experimental results as follows. ClnSrc cannot
achieve satisfactory results mainly because the source and the target

data have divergence on data distribution. Specifically, although the

source data is fully clean, the imputed data in the target may not be

the ground-truth. Subsequently, the classifier trained on the source

may encounter dataset shift when serving the target. As validated in
theML community [9, 23, 41], dataset shift would severely affect the

performance of ML models. In contrast, AdaSrc enables the source

data to be adapted to target data distribution. The experimental

results show that such adaptation is beneficial for ML training. The

results also motivate us to design target mask generation in the

architecture of DAGAN: we use target mask generation to learn the

missing pattern of the target and reduce the distributional difference

between source and target data.

6.4 Evaluation on Model Design of DAGAN
We have designed a GAN-based approach DAGAN to fulfill adap-

tive data augmentation. Next we examine the design choices in the

architecture of DAGAN. We adopt the same missing injection set-

ting used in the previous section. We focus on the neural network

(NN) design of the data generator Gx , and consider two widely-

used neural network models, MLP and LSTM, which are presented in

Section 4.2. Note that we do not evaluate Convolutional Neural Net-

work (CNN) for data generator [10, 32], because the existing work

has shown that CNN achieves inferior performance in relational

data generation [14]. Moreover, we use MLP to implement mask

generator Gm , because the process of mask generation is relatively

simple. We also evaluate LSTM for mask generator and obtain simi-

lar results to that of MLP. As observed from Table 4, LSTM achieves



Table 4: Evaluating Neural Network Design on F1.
(a) EyeState Dataset

Missing Gen Missing Rate
0.2 0.3 0.4 0.5 0.6 0.7 0.8

MCAR MLP 0.68 0.63 0.54 0.57 0.54 0.52 0.43

LSTM 0.65 0.62 0.61 0.60 0.61 0.56 0.57

MAR MLP 0.65 0.61 0.59 0.57 0.59 0.53 0.55

LSTM 0.64 0.65 0.63 0.62 0.60 0.60 0.59

MNAR MLP 0.69 0.68 0.64 0.67 0.63 0.61 0.64
LSTM 0.70 0.68 0.66 0.62 0.67 0.59 0.61

(b) Adult Dataset

Missing Gen Missing Rate
0.2 0.3 0.4 0.5 0.6 0.7 0.8

MCAR MLP 0.60 0.59 0.56 0.58 0.41 0.53 0.28

LSTM 0.60 0.61 0.56 0.59 0.58 0.57 0.60

MAR MLP 0.58 0.52 0.56 0.54 0.53 0.56 0.49

LSTM 0.58 0.61 0.58 0.55 0.57 0.55 0.59

MNAR MLP 0.60 0.57 0.54 0.58 0.59 0.55 0.53

LSTM 0.59 0.57 0.56 0.62 0.58 0.57 0.54

better performance than MLP in most of the cases on our datasets.

Similar results are also reported in a recent empirical study [14].

The main reason is that LSTM generates an attribute based on the

“understanding” of previous attributes, and thus it would be capable

of capturing attribute correlation. In the remainder of this section,

we use LSTM as the default NN model for data generator Gx .

6.5 Robustness for Different Missing Patterns
This section evaluates the robustness of DAGAN for handling dif-

ferent missing value patterns, compared with the state-of-the-art

data imputation approaches. To make a comprehensive comparison,

we consider three different settings of missing value injection on

the EyeState and Adult datasets.

Evaluation under NoOverlap noise injection setting.We evalu-

ate robustness of approaches under the NoOverlapmissing value in-

jection setting. Note that in practice, in many machine learning and

deep learning projects, high missing value rates are not rare. For ex-

ample there are many tables in OpenML (https://www.openml.org)

with high missing value rates. We provide statistics of some repre-

sentatives of such tables in our technical report [24] due to space

limit. Thus, this section first considers the scenarios of high missing

rates. Specifically, we fix the missing rate as 0.6 to inject missing

values to the first half of attributes in the source data, while varying

missing rate p from the values in {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} to

inject missing values to the last half of attributes in the target data.

Figures 5 and 6 show the experimental results on the difficult
scenarios where missing values are injected according to MNAR

and MAR. In these scenarios, missing values are dependent on the

underlying data, and thus the missing pattern is non-trivial to be

identified. The result shows that DAGAN outperforms the other

data imputation methods in most of the cases. For example, on the

EyeState dataset and under the MAR setting, DAGAN respectively

outperforms MICE, MISF and GAIN by 11.11%, 31.79% and 22.66%

on average. Moreover, DAGAN also brings 13.89% to 25.97% im-

provement under the MNAR setting. The superior performance of

DAGAN is attributed to GAN-based architecture with both target
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Figure 5: Robustness evaluation under NoOverlap-MNAR.
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Figure 6: Robustness evaluation under NoOverlap-MAR.
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Figure 7: Robustness evaluation under NoOverlap-MCAR.

mask generation and source data adaptation. Even with compli-

cated missing patterns caused by MAR and MNAR, the architecture

is effective and robust in achieving the data distribution preserving

and missing pattern adaptive properties when adapting the source

data. We also observe that, although some imputation methods also

achieve good performance in some cases, e.g., Figure 6(b), DAGAN
is more robust than those baseline approaches.

Figure 7 shows that data imputation approaches perform well

under the MCAR setting. There are two reasons. First, the MCAR

setting is simple and the distributional difference between source

and target data is not severe. Second, most existing data imputation

methods [35, 42, 49] consider MCAR as their basic missing setting

and have proposed a bunch of optimization techniques for this

setting. Note, however, that most of missing patterns in practice do

not obey the MCAR assumption.

Note that we also conduct experiments under NoOverlap setting
with low missing rates within the range between 0% and 10%. The

result also validates that DAGAN is more robust than the baselines.

Nevertheless, the improvement is less significant. The main reason

is that deep learning models can tolerate dirty data to some extent

by using strategies such as regularization [50], when missing rates

are low. We put more discussion in our technical report [24].

Evaluation under Overlap noise injection setting. We also

evaluate the approaches on the Overlap setting for injecting miss-

ing values. Unlike NoOverlap, we inject missing values to the same
set of attributes in both source and target. However, to simulate

noise shift, we fix the missing rate p = 0.1 in the source data, while

https://www.openml.org
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Figure 8: Robustness evaluation under Overlap-MNAR.
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Figure 9: Robustness evaluation under Overlap-MAR.
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Figure 10: Robustness evaluation under Overlap-MCAR.

vary the values of p from 0.2 to 0.7 in the target data. As observing

Figures 8, 9 and 10, we find similar results to that of NoOverlap
setting. The result validates that DAGAN is capable of handling

noise shift for ML models in various missingness relationships.

Summary. To summarize, we compare the average performance

of approaches across missing rates under different datasets and

missing value injection setting, as shown Table 5, where notations

“++”, “+”, “-” and “- -” represent the 1st, 2nd, 3rd and 4thmethods

in terms of F1 score respectively. We can see that DAGAN clearly

outperforms existing imputation methods on MNAR and MAR

(more complicated and more common in practice). Observed from

the table, for MNAR and MAR, DAGAN is the winner in 7 out of 8

settings, while being the second best in only 1 setting. For MCAR,

DAGAN achieves better performance than GAIN and MICE in most

of the cases. It also achieves comparable results to MISF, i.e., the
margin between MISF and DAGAN is 3.5%.

In practice, given a dataset with missing values, if it is “known”

that the missing pattern is MCAR, we will suggest MISF, and if the

missing pattern is MNAR or MAR, we will suggest DAGAN. Unfor-
tunately, precisely deciding which missing value pattern (MCAR,

MAR, or MNAR) a dataset has is a hard problem. Hence, a safe

choice is to choose a method that is consistently good, i.e., the most

robust. Table 5 clearly justifies the robustness of our approach.

Table 5: Comparison ofAverage Performance acrossMissing
Rates under VariousMissing Value Injection Settings, where
notations “++”, “+”, “-” and “- -” represent the 1st, 2nd, 3rd
and 4thmethods in terms of F1 score respectively.
Missing Dataset-Setting GAIN MISF MICE DAGAN

MNAR

EyeState-Overlap - + - - ++

Adult-Overlap + - - - ++

EyeState-NoOverlap - - - + ++

Adult-NoOverlap - - - + ++

MAR

EyeState-Overlap - - + - ++

Adult-Overlap - - - + ++

EyeState-NoOverlap - - - + ++

Adult-NoOverlap - - - ++ +

MCAR

EyeState-Overlap - - ++ - +

Adult-Overlap - - - + ++

EyeState-NoOverlap - - ++ + -

Adult-NoOverlap - - ++ - +

Table 6: Evaluating Model Retraining for Multi-ADA on F1.
Missing Dataset Multi-Clf ERM GDRO

MNAR EyeState 0.648 0.645 0.646

Adult 0.576 0.572 0.632

MAR EyeState 0.618 0.566 0.616

Adult 0.576 0.525 0.605

MCAR EyeState 0.603 0.586 0.601

Adult 0.587 0.506 0.579

6.6 Evaluation on Multi-Target Augmentation
This section evaluates the performance of DAGAN when con-

ducting multi-target adaptive data augmentation. Specifically,

we take Ds as source data, and combine unlabeled datasets

with different missing rates, i.e., Ut =
⋃
p U

p
t where p ∈

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Similarly, we also generate target

test set by combining test sets with different missing rates, i.e.,

Dt =
⋃
p D

p
t . We first evaluate model retraining strategies ERM

and GDRO, by considering how the loss on the test dataset changes

with training iterations. Figure 11 shows the experimental results

on the EyeState dataset where legend like “test-0.2” indicates the

loss on test data D
p
t with missing rate p = 0.2. We have an inter-

esting observation that GDRO performs much better than ERM

to reduce the losses of different subgroups under all the missing

settings. This is attributed to group-aware optimization scheme in

GDRO. The optimization scheme focuses on optimizing the group

with the maximum loss value, instead of the average loss. In such a

way, it can enable losses of different groups to be simultaneously

reduced. We also conduct experiments on the Adult dataset and

find similar results. Please refer to our technical report [24].

Next, we compare DAGAN for serving multiple test sets with an

alternative method discussed in Section 2. The alternative method

trains multiple classifiers, where f +i is used for test set Di
t, which

is different from our solution that only maintains one classifier

f +. For ease of presentation, we name the alternative method as

Multi-Clf. The experimental result is shown in Table 6. We have

the following observations. First, ERM degrades the performance

compared withMulti-Clf, which validates our claim that themethod

of simply training classifier on the augmented data cannot achieve
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Figure 11: Evaluating model retraining strategies, ERM and GDRO, by varying training epochs on the EyeState dataset, where
legend like “test-p” indicates the loss of our classifier on test data Dp

t with missing rate p.

good performance. Second, GDRO achieves comparable F1 scores

with and sometimes outperforms the Multi-Clf method. This result

is encouraging because we only need to maintain one classifier in

GDRO, which relieves user’s burden on model deployment while

still preserving prediction quality. The improvement brought by

GDRO is due to the subgroup-aware optimization technique that

considers to optimize the subgroup with the largest loss iteratively
and thus GDRO can reduce the diversity among different subgroups.

7 RELATEDWORK
Missing Data Imputation.We categorize existing methods into

three groups: statistical-, discriminative model-, and generative

model-based. Statistical methods include replacing the missing

values with zero/mean/median value or mode value according to

their meaning. These simple imputation methods are convenient to

quickly validate claims but far from enough to be of high quality.

Discriminative model-based methods include Multiple Imputation

with Chained Equations (MICE) [35] and MissForest (MISF) [42].

They predict the missing values utilizing observed values through

regression and random forest respectively. A recent work, Gen-

erative Adversarial Imputation Nets (GAIN) [49], is a generative

model-based method based on GAN models. However, these tradi-

tional methods are mainly designed and proved effective for MCAR

setting, so are less robust to more complex missing patterns such as

MAR and MNAR. For supervised ML, the gap of different missing

patterns between the source and the target is not considered by

traditional approaches. Our work fills this gap.

Learned Data Cleaning. There have been learned approaches for

error detection [29]. In our work, we consider values as explicitly

missing and the detection is straightforward. There are also learned

approaches for data repairing, e.g., GDR [47], SCAREd [46], and

Baran [28]. GDR [47] and SCARED [46] learn data dependencies

mainly for categorical values. Baran [28] ensembles the outputs

from multiple error corrector models for repairing unnormalized

values, dependency based errors, and outliers. HoloClean [37] is

a statistical inference cleaning system, which leverages available

quality rules, value correlations, reference data, and multiple other

signals to build a probabilistic model for data repairing. The learned

data repairing methods are not specially designed for repairing

missing values, and they don’t consider different missing patterns

between the source and the target that is the main focus of this

work, but they are complementary to our work.

Data Augmentation. Data augmentation is widely used in ML

to obtain more training data [11, 13, 20, 21, 25]. Traditional works

apply heuristics, such as crops, rotations and flips to original im-

ages, for data augmentation [12, 13, 25, 36, 44]. As it is difficult

to guarantee quality and diversity of the augmented data, some

existing works consider using generative models to implement aug-

mentation [36, 51]. However, few attention is paid to the adaptive

relational data augmentation, especially for addressing the noise

shift caused by missing data, as what we study in this paper.

8 CONCLUSION
We have presented a novel adaptive data augmentation framework

for supervised ML. We have proposed a novel GAN-based neural

networks, the DAGAN, to learn the noise mask from the target data

and augment the source data by adapting them using the target

mask. Empirically, we have shown that our method is more robust

than the state-of-the-art data imputation methods.
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