Selective Data Acquisition in the Wild for Model Charging

Chengliang Chai'*, Jiabin Liu'*, Nan Tang?, Guoliang Li!, Yuyu Luo!
1Department of Computer Science, Tsinghua University, China; 2QCRI, HBKU, Qatar
{ccl@mail.,liujb19@mails.,liguoliang@,luoyy18@mails.}tsinghua.edu.cn,ntang@hbku.edu.qa

ABSTRACT

The lack of sufficient labeled data is a key bottleneck for practition-
ers in many real-world supervised machine learning (ML) tasks. In
this paper, we study a new problem, namely selective data acquisi-
tion in the wild for model charging: given a supervised ML task and
data in the wild (e.g., enterprise data warehouses, online data repos-
itories, data markets, and so on), the problem is to select labeled
data points from the data in the wild as additional train data that
can help the ML task. It consists of two steps (Fig. 1). The first step
is to discover relevant datasets (e.g., tables with similar relational
schema), which will result in a set of candidate datasets. Because
these candidate datasets come from different sources and may fol-
low different distributions, not all data points they contain can help.
The second step is to select which data points from these candidate
datasets should be used. We build an end-to-end solution. For step
1, we piggyback off-the-shelf data discovery tools. Technically, our
focus is on step 2, for which we propose a solution framework called
AutoData. It first clusters all data points from candidate datasets
such that each cluster contains similar data points from different
sources. It then iteratively picks which cluster to use, samples data
points (i.e., a mini-batch) from the picked cluster, evaluates the
mini-batch, and then revises the search criteria by learning from
the feedback (i.e., reward) based on the evaluation. We propose a
multi-armed bandit based solution and a Deep Q Networks-based
reinforcement learning solution. Experiments using both relational
and image datasets show the effectiveness of our solutions.
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1 INTRODUCTION

Data-centric ML. In many supervised ML projects, the main bot-
tleneck is the lack of sufficient labeled train data (a.k.a. data-centric
ML) [13, 35, 43, 44], not which ML models to use and how to op-
timize these models (a.k.a. model-centric ML), especially for ML
practitioners.

ExampLE 1. [Insufficient train data.] Consider Fig. 2(a) that shows
a dataset Terain, which is used to train a regression model to predict
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Figure 1: Selective data acquisition for model charging.

City Year | Area | Security || Price

Kolkata | 2009 | 710 No 3,200,000
Kolkata | 2013 | 770 No 3,850,000
Kolkata | 2007 | 935 No 2,524,000
Kolkata | 2006 | 973 Yes 3,611,000

(@) Ttrain : Train dataset (learn to predict “Price”).

City Year | Area | Security || Price || Ground Truth
Kolkata | 2017 | 350 No ? 2,100,000
Kolkata | 2019 | 465 Yes ? 4,365,000
Kolkata | 2015 | 572 No ? 3,268,000
Kolkata | 2012 | 655 Yes ? 2,599,000
Kolkata | 2012 | 735 No ? 3,300,000
Kolkata | 2017 | 881 Yes ? 4,698,000
Kolkata | 2011 | 1123 Yes ? 3,324,000
Kolkata | 2014 | 1210 Yes ? 5,000,000

(b) Ttest : Test dataset (predict the “Price” column).

Figure 2: Sample train and test datasets.

the house Price at Kolkata, India, based on the features (City, Year,
Area, Security). The test data Ttest is given in Fig. 2(b), whose
Price values are to be predicted. The ground truth Price values are
also provided for helping the discussion.

Figure 3(a) shows both the learned model using only Tgrain (i-e.,
Line 1) and the ground truth model that we want to learn (i.e., Line 2).
Because Tirain is small and does not contain sufficient data points
(e.g., there are many houses with Area > 1000 or < 700 in Ttest, but
all houses in Tyrain have Area in the range [700, 1000]), the model
trained using T¢rain (i-€., Line 1) is not good enough for Teest.

Data acquisition. The process of getting more labeled data is
known as data acquisition, which is categorized into two classes:
human-in-the-loop and automatic data acquisition. Human-in-the-
loop data acquisition includes weak supervision where users need to
define rules (e.g., Snorkel [50], data programming [49]), and crowd-
and expert-sourcing. Automatic data acquisition uses automatic
methods to obtain more train data.

Selective data acquisition in the wild for model charging. We
ask whether it is possible to find useful data points from the data in
the wild as shown in Fig. 1 so as to “charge” the model, where we
know that different datasets may follow different data distributions,
but meanwhile, we also hypothesize that some data points can help.
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Tirain Line 1: Only use Ttrain City Year | Area | Security | Swimming Pool | Garage || Price
O Trest ) r1 | Bangalore | 2017 | 1210 | Yes Yes Yes 5,700,000
oDy Line 2: Unseen ground truth ro [Bangalore | 2018 | 3340 | Yes Yes No 30,000,000
eD, = Line 3: Use Train, D1, D2, D3 r3 | Bangalore | 2016 | 2502 | Yes Yes Yes 20,000,000
D3 Line 4: Use Ttrain and selected @ 4 @ 74 | Bangalore | 2009 | 2293 | Yes Yes No 9,630,000
-3 (b) House price dataset from Bangalore (D1).
® ’ City Year | Area | Security | Resale | Garden | Gym | Price
. s1 | Mumbai | 2019 | 425 Yes Yes No No 5,500,000
S5 | Mumbai | 2013 | 720 No Yes No No 4,850,000
s3 | Mumbai | 2018 | 1060 | Yes Yes Yes Yes 11,000,000
4 | Mumbai | 2016 | 1680 | Yes Yes No Yes 15,000,000
(c) House price dataset from Mumbai (D2).
City | Year | Area | 24 x 7 Security | Intercom || Price
1 | Delhi | 2007 | 385 No No 3,300,000
to | Delhi | 2009 | 435 No Yes 2,500,000
“““ ts | Delhi | 2014 | 600 No No 12,500,000
5 © ©OUnseen test data ;[ Delhi | 2004 | 900 No No 5,500,000

(a) Learned models using different train datasets

(d) House price dataset from Delhi (D3).

Figure 3: Examples of models learned from different train datasets. (b) (c) and (d) are three candidate datasets D1, D,, and D3,
respectively. In (a), each line represents an ML model, where each point in the line represents a predicted value based on a set
of features. Line 1 is a model learned only with T ,in; Line 2 is the ideal but unknown ground truth w.r.t. Ttest; Line 3 uses
Ttrain and all data points from candidate datasets (i.e.,, T¢rain U D1 U D2 U D3); Line 4 uses Tirain and selected data points.

For doing so, the first step is to select candidate datasets. For
tables, this is known as data discovery with many off-the-shelf
tools [15, 20, 41]. For images, there are many benchmarks, as well
as Web APIs such as Google, Baidu or Azure image search.

ExampLE 2. [Using all data points in candidate datasets.]
Fig. 3(b)(c) and (d) show three datasets that also contain house price
information in different cities of India, i.e., D1, D2 and D3 for Ban-
glore, Mumbai, and Delhi, respectively. They have different schemata
with Terain and Ttest in Fig. 2, but they can be used as train data.

A straightforward solution is to add all these datasets to the train
data (i.e., Terain := Ttrain Y D1 U D2 U D3) and train a model. By
doing so, we can obtain a model as shown in Fig. 3(a) Line 3, which,
unfortunately, deviates far from the ground truth model Line 2.

Our question is that: given candidate datasets, whether selecting
some data points will be better than using all?

ExAMPLE 3. [Selected data points.] If we can select “good” data
points, such as {r1} from D1, {s1, s2,s3} from Dy, and {t1,t4} from
Ds as additional train data that are highlighted in Figs. 3(b—d), we
can use them in Fig. 3(a) (i.e., those annotated by green frames) and
train a model Line 4. Clearly, Line 4 is much closer, thus better than
Line 1 and Line 3, to the ground truth model Line 2.

Example 1 shows that more labeled data is needed. Example 2
tells us using all data points is not ideal. Example 3 shows it is more
beneficial to select some data points.

Challenges. There are two essential challenges. First, candidate
datasets may come from various data distributions that are different
from the desired data distribution of the ML task, which is unknown.
Second, many data points in these candidate sets are not good w.r.t.
our ML task, which raises the challenge that how can we effectively
select and measure which new data points should be added.

Contributions. Our contributions are summarized as follows.

(1) Selective data acquisition in the wild for model charging.
We study the problem of automatic data acquisition for supervised

ML in a new setting where the supervised ML task does not have
enough train data, and it has access to the data in the wild (Section 2).
Note that datasets in the wild are heterogeneous and not all of data
points can help the task.

(2) A solution framework. We propose a solution framework (see
Fig. 1) that consists of two steps: dataset discovery that selects
candidate datasets and data points selection that selects data
points from these candidate datasets. (Section 3)

(3) AutoData with multi-armed bandit. We introduce a classi-
cal multi-armed bandit based solution to handle the exploration-
exploitation trade-off for AutoData. (Section 4)

(4) AutoData with Deep Q Network-based reinforcement learn-
ing (RL). Another effective model is to use Deep Q learning based
RL, which learns a neural network to approximate the Q-table (i.e., a
simple but huge lookup table that calculates the maximum expected
future rewards for action at each state) that decides which cluster
to select based on the current status. (Section 5)

(5) Evaluation. We conduct extensive experiment to show that
our methods can effectively select data points from different data
sources and improve the ML performance by maximum 14.8% and
8.3% on relational and image datasets, respectively. (Section 6)

2 PRELIMINARY

Supervised machine learning. We consider supervised ML as
training a model M to learn a function f() that maps an input to
an output based on example input-output pairs as f : X —= Y.

We use M(A) to denote the model M that is trained with dataset
A, and the notation M(A, B) to denote the model M that is trained
with A and is evaluated with dataset B.

Train/validation/test datasets. A set of labeled dataset T is
typically split into three disjoint subsets as train/validation/test
(Ttrain/Tval/Ttest)- Ttest is completely held-out during training.

Data in the wild. We use the term data in the wild to generally
refer to all datasets that one can have access to, including data lakes,



data markets, online data repositories, enterprise data warehouses,
and so on. More specifically, for supervised ML, we consider it as a
set of datasets D = {Dj, ..., Dp}, where D; (i € [1,m]) is a set of
(data point, label) pairs.

Candidate datasets. The candidate datasets w.r.t. a supervised ML
task M, denoted by DF, is a subset of D that contains datasets
“relevant” to M. For tabular data, the relevance typically means that
these candidate datasets have the same or highly overlapping rela-
tional schema with T¢paipn. For image data, the relevance typically
means that these candidate datasets contain images that have the
same labels (e.g., {cat, dog, bird, fish}) as T¢rain-

Candidate data pool. The candidate data pool (or simply data
pool), denoted by P, is the union of all data points in the candidate
datasets, i.e, P = U(x,y)ep;,D; eDe (%, Y)-

Selective data acquisition for model charging. Given a super-
vised ML task with a pre-specified model M, train/validation/test
datasets (Tgrain/Tval/Ttest), and a candidate data pool P, the prob-
lem is to select a subset P* C P using T¢rain and Tyal, such that it
can obtain the most performance improvement of the supervised
ML task on Ttest: P* = argmaxprcp M(Terain U P, Ttest) —
M(Ttrain Ttest)-

EXAMPLE 4. [Selective data acquisition.] Given an ML task of
training a regression model using Tirain as shown in Fig. 2 and a
data pool P that consists of all data points of {D1, D2, D3} in Fig. 3,
the problem is to select good data points, such as those data points
with green frames as shown in Fig. 3(a), which will result in Line 4.

3 A SOLUTION FRAMEWORK
3.1 Dataset Discovery

As shown in Fig. 1, the first step, namely data discovery, is to
discover datasets that are relevant to the given ML task. In this
work, we mainly support relational and image datasets.

For tables, there have been many works on dataset discovery on
data lakes [20, 41, 42, 45]. Most of them need to host a server locally
to store and index datasets [20, 41, 42]. Instead, we adopt a more
flexible and extensible strategy that uses Web APIs for this purpose.
More specifically, by default, we use NYU Auctus REST API [45] that
supports the search of “unionable tables” which have significant
attribute overlap with the table Tirain. Google and Kaggle only
support keyword based dataset search, and wrappers for schema
alignment are needed to select candidate datasets. Moreover, if the
selected datasets do not have an aligned attribute with Tirain, we
use NULL values for this attribute.

For image datasets, we can either search images in public bench-
marks (e.g., ImageNet) or use Web APIs (e.g., Google, Azure, or
Baidu) by specifying a label (e.g., cat, dog, or bird).

3.2 Data Point Selection

3.2.1 Modeling Heterogeneous Datasets. Note that these can-
didate datasets come from different sources and may follow different
data distributions. A common practice of modeling such heteroge-
neous datasets is data clustering, such that the data points in each
cluster are similar (or “homogeneous”).

Tirain ¢D1 @Dz +Dg Tirain ¢D; @D2 +Dg

o)

(b) Clustering based on GMM

(a) Clustering based on datasets

Figure 4: From candidate datasets to clusters.

Next, we will first show that keeping data points in their original
dataset is not ideal, followed by discussing what will be a good
clustering strategy.

Keeping in original datasets. A straightforward way is to keep
each data point in its original dataset and acquire data from each
dataset, which can be seen as clustering data points based on the
datasets they come from.

ExAMPLE 5. [Keeping in original datasets.] Consider the three
datasets D1, Do, and D5 in Fig. 3. If we keep data points by datasets,
we will get three groups, each per dataset.

Fig. 4(a) depicts that the feature spaces of different data points
from different datasets may highly overlap. Evidently, deciding
which dataset is helpful might be very hard, because only a small
subset from each dataset might help. Therefore, we do not target at
which datasets are helpful; instead, we aim at finding which data
points are helpful, for which we need to model all data points in a
more fine-grained manner than using datasets.

Naturally, we need clustering algorithms that can automatically
partition all data points into a number of distinct groups that data
points within groups are similar and across groups are dissimilar.
We have evaluated several common clustering methods such as
Multivariate Gaussian Mixture Model (GMM) [21], DBSCAN [19]
and Mean-Shift [14] (see more details in Section 6.4). We empirically
found that GMM is a robust choice and thus we use GMM by
default. Note that practitioners or domain experts can decide which
clustering methods to use for specific datasets and tasks.

Multivariate Gaussian Mixture Model (GMM). GMM is a prob-
abilistic model for representing the presence of subpopulations
within an overall population, i.e, the data pool in our problem.
Similar data points can be clustered automatically as a subpopula-
tion modeled by a Gaussian distribution, and multiple clusters (i.e.,
subpopulations) constitute the GMM.

Formally, GMM takes as input # and uses Expectation-
Maximization (EM) algorithm [18] to compute the Probability Distri-
bution Function (PDF) of data in P, i.e., p(x) = Z?zl Tipi(x; fis 2i),
where x denotes each input object in . More specifically:

(1) g is the number of Gaussian distributions, the #-clusters;

(2) Each subpopulation p;(u;, 2;) corresponds to a cluster, denoted
by Ci (i € [1,g]).

(3) Vx € P, we compute the posterior probability that x belongs to

each cluster (the probability can be obtained from the results of EM
algorithm), and assign x to the cluster with the highest probability.



Fortunately, a good number g can be set automatically by mini-
mizing Akaike Information Criterion (AIC) [1] of points in P.

EXAMPLE 6. [Clustering by GMM.] Fig. 4(b) shows the five clusters
{C1, Co,C3,C4,Cs} that are computed by GMM over all data points
in {D1, Dy, D3}. Each cluster may contain data points from different
datasets, e.g.,, C1 contains one data point from D and two data points
from Ds.

As shown in Example 6, after we use GMM to generate clusters
Ci (i € [1,5]), as well as their parameters to represent the data in P,
the data points in each cluster are relatively homogeneous. Thus,
in the following of this paper, we will devise solutions based on the
clusters computed by GMM.

AutoData: Iterative data point selection from clusters.
AutoData takes train Ttrain, validation Ty41, a candidate data pool
P of data points that are modeled as clusters C = {Cy,...,Cp}, and
a pre-defined model M as input. It iteratively interacts with these
clusters and modifies the train data with the following operations:
selecting a mini-batch as new train data, re-training the model M
by adding the new mini-batch, evaluating the benefit of this new
mini-batch, deleting a mini-batch if it is not good, and updating the
search criteria based on the feedback of model evaluation.

The above iterative process will terminate when some pre-
specified stopping criteria is met (e.g., at most 30 iterations, or
at most 30 minutes, or the model has converged).

4 MULTI-ARMED BANDIT FOR AUTODATA
4.1 Bridging MAB and AutoData

Multi-armed bandit (MAB). MAB [60] is a simple yet powerful
algorithmic framework that makes decisions over time under uncer-
tainty. It considers N possible actions to choose from; pulling each
possible action is also known as an arm. It models an agent that si-
multaneously attempts to acquire new knowledge (i.e., exploration)
and optimize their decisions based on existing knowledge (i.e., ex-
ploitation). The agent attempts to balance these competing tasks to
maximize their total values over the period of time considered.

Bridging MAB and AutoData. There is a natural connection be-
tween MAB and AutoData. More concretely, we have g clusters,
where each cluster can be considered as an arm. During each it-
eration, we need to select a cluster (i.e., pull an arm) and then
sample a mini-batch from this selected cluster. We use stratified
sampling [46] to sample from the mini-batch. It further divides the
cluster into several subgroups before sampling based on the occur-
rence likelihood of data points, and simple random sampling can be
applied within each stratum. Note that other sampling methods like
uniform random sampling, systematic sampling and cluster sam-
pling can also be used [46]. Then, a reward or a penalty needs to be
calculated based on the selected mini-batch, depending on whether
it increases or decreases the model performance. The method needs
to balance the choices between selecting the clusters that currently
achieve high rewards (i.e., exploitation) and the clusters that are
rarely selected (i.e., exploration).

4.2 Solving AutoData with MAB

In order to apply MAB to our studied problem, we need to decide
how to quantify the reward or penalty, and what is the strategy to
balance exploration-exploitation. Let’s start by defining the distance
between clusters, which are used to compute reward/penalty scores.

Distance between clusters. Recall that each cluster corresponds
to a Gaussian distribution (defined in Section 3.2), we use Wasser-
stein distance to compute the distance between any other two
clusters C; and Cj, which is defined as:

1 1
d(Ci, C=W(pi. p)=[lmi-p[+trEi+3-2E 23 ()

where p; = (p;, 2;) and pj = (yj, ;) are the Gaussian Distributions
(i.e., means and covariance matrices) of C; and Cj, respectively; and
tr is used to compute the trace (i.e., the sum of the elements on
the main diagonal) of the matrix. Wasserstein is a symmetric dis-
tance function, i.e., d(C;, Cj) = d(Cj, C;). Other symmetric distance
functions can also be used. The distance d(C;, C;) is normalized to
[0, 1], where 0 means C; and C;j follow the same distribution, and 1
means that they are far away from each other.

N(C;) denotes the neighbors of C;, relative to a threshold 7 as
all clusters in C whose distances to C; are less than r, i.e., VC €
N(C;),d(C;,C) < 7. Naturally, C; € N(C;).

Reward/penalty score at one iteration. Intuitively, a score
should be given to a cluster if it is selected, and a sampled mini-
batch from it can change the model performance. More precisely,
when it increases the performance, we call it reward, and when it
decreases the performance, we call it penalty.

To this purpose, we first measure the performance difference
between two models if a mini-batch B (with size b) is added to the
currently train dataset Ttrain, M(Ttrain) and M(Tgrain U B), both
being evaluated using the validation dataset Tya1: A = M(Ttrain Y
B, Tya1) — M(Ttrain, Tva1)- Let cluster C; be the cluster where B is
sampled from. If A is positive (resp. negative), we need to award
(resp. penalize) C;. Moreover, we empirically found that it is also
beneficial to reward or penalize the neighbors N(C;) of C;. Con-
cretely, if C; is selected, we compute score rj for Cj as:

e rj =AX(1-d(C;Cj)/r),if Cj € N(C})
e 1j=0,if C; ¢ N(C;)

That is, if A > 0, all clusters in N(C;) will be rewarded; other-
wise, if A < 0, all clusters in N(C;) will be penalized. There is no
reward/penalty for any cluster that is far from C; (i.e., C; ¢ N(Cy)).

ExXAMPLE 7. [Score.] Consider clusters in Fig. 4(b). Assume that
N(C1) = {C1,C2}, N(C2) = {C1,C2,Cs}, N(C3) = {C3,C4,Cs},
N(Cq) = {C3,C4}, and N(Cs) = {C2,C3,C5}.

Let B be a mini-batch selected from C1 and A = M(T¢rain U B) —
M(Tt¢rain) = 0.1. Since A > 0, we need to reward all clusters that are
neighbors of C1, i.e., {C1,C2}. Let d(Co,C1) = 0.1, 7 = 0.5, then,

er;=AX(1-0)=0.1x1=0.1, and
e ry=AX(1-0.1/0.5) = 0.1 % (1 —0.2) = 0.08, and
® r3, 14,15 are 0, because {C3, Cy4, C5} are not in N(C1).

In the following, r]].c denotes the score of C; at iteration k.

Aggregated reward/penalty scores for multiple iterations.
Because the process for selective data acquisition is iterative



Algorithm 1: A UCB-based MAB Algorithm
Input: clusters C, Tirain, Tval, M, 7, total iterations k
Output: updated T¢rain.

1 foreach C; € C do

2 Compute N(C;) based on 7;

3| RI=0,n?=0,U)=0, T2 . = Ttrain;

4 for k from1 tok do

5 C; = Select the cluster with the largest UCB value;
6 B; = A mini-batch sampled from C; ;

7 | A=M(TKL UB;, Tya1) - M(TEL . Tval):

train rain’

8 if A > 0 then

9 L Ttliain = Tt]f';}n U B;;
10 for each C; € N(C;) do
11 L TJIF =A-(1- Lcicj));
12 Update R]’? and U]k ;

k.
3 return Ttrain’

-

with multiple iterations, we need to define the aggregated re-
ward/penalty scores correspondingly.
Let R{.‘ be the aggregated score of cluster C; from iteration 1 to

k. Let Ri.“ = Lk Zf_l rl’ where rl’ is score of cluster C; at iteration
ni -

Jj, and ni.“ is the total number of times that cluster C; was assigned

non-zeros scores from iterations 1 to k.

Next we use an example to illustrate the computation of nf .

ExaMPLE 8. [Computing ni.‘.] Consider three iterations: a mini-
batch from cluster Cy is selected at iteration 1; a mini-batch from C
is selected at iteration 2; a mini-batch from Cy is selected at iteration
3. All n? is initialized 0 at iteration 0.

[Iteration 1.) Because C is selected and N(C1) = {C1,C2} (see Ex-
ample 7), n% =1and né =1

[Iteration 2.] Because Cy is selected and N(Cz) = {C1,Ca,Cs}, the
numbers for C1, C2, and Cs will be incremented by 1, 1.e., n% =1+1=
2, n% =2, andng =1.

[Iteration 3.] Because Cy is selected and N(Cy) = {C3, C4}, the num-
bers for C3 and C4 will be incremented by 1, resulting in ng =1and

ni = 1. While the numbers for other clusters will not be affects, i.e.,

3

m

_ 3 _ 3 _
=2,n;=2,andn; = 1.

A crude exploitation-only method is to select the cluster C;
with the largest Ri.‘ at iteration k. Clearly, this can easily result in
local optimum, because it misses the exploration attempt for rarely
selected but possibly helpful clusters.

Upper Confidence Bounds (UCB) based solution. A popular
strategy to combine “exploration” with “exploitation” is to use
UCB-based solutions [2]. UCB estimates the score if a cluster is
selected and we acquire data points from the cluster. At a high level,
the score is computed by the summation of an exploration and an
exploitation score. The less frequently a cluster is picked, the higher
the exploration score. The higher reward the cluster has obtained,
the higher the exploitation score. Hence, a combination of the two
scores used by UCB-based method can well handle the exploration-
exploitation trade-off. Specifically, for each Cj, at iteration k:

UCB(Ci, k) = UF = RF + anJ2Innk /(n* + 1) ®)

where « is a pre-defined parameter and nk is the sum of nf for all
clusters at iteration k (i.e., nk = Ziel,g n{? and g is the total number

of clusters). In Eq. 2, the former part (Ri.C ) refers to the exploitation,
which means that we will focus more on the cluster in which some
data points have resulted in much performance improvement. The

latter part (/2 In nk/ (nic + 1)) refers to the exploration, i.e., focusing
more on the clusters that are rarely picked.

Consider Example 8: at iteration 1, n! = Zie[1,5] n} =1+1+
0+0+0 = 2;at iteration 2, n® = Yey 5% =2+2+0+0+1=5;
and at iteration 3, n® = 2ie[1,5] n? =2+2+14+1+1=7.

At iteration k, we select cluster C; with the maximum UCB value,
ie., Ul.k > U]k for any j € [1,g].

Algorithm. Algorithm 1 shows the overall process of the UCB-
based solution. It first initializes the algorithm (lines 1-3). At each
iteration (lines 4-12), it selects the cluster with the largest UCB
value (line 5), and samples a mini-batch from the selected cluster
(line 6). It then evaluates the selected mini-batch by re-training the
model (line 7). It will add the mini-batch to the train dataset only
if it can cause a reward (lines 8-9). It then updates the reward or
penalty for neighbors of the selected cluster (line 11), as well as the
aggregated reward/penalty scores and UCB values (line 12). Finally,
it returns the updated train dataset (line 13).
Let’s better illustrate Algorithm 1 using an example.

ExaMmpLE 9. [UCB for AutoData.] Fig. 5 is 3 iterations.

[Initialization: Fig. 5(a).] There are five clusters. It initializes R?, rl(.)
and Ul.O as 0 for all clusters. Let T = 0.5, the threshold for deciding
whether two clusters are neighbors, and & = 0.05, the parameter in
Equation 2 for computing UCB values. Each mini-batch contains two
data points.

[Iteration 1: Fig. 5(b).] At this point, all clusters have the same UCB
values, so we randomly select one cluster, say C1. After sampling a
mini-batch from C1 and re-training the model, we observe that the
model performance improves by 1%. Hence, A = 0.01 and we will add
this mini-batch to T® . as Tt1

train ain’
Suppose N(C1) = {C1,Cz} and d(Cz, C1) = 0.1, then:

o rl =A=0.01r%=Ax(1-0.1/0.5) = 0.008;
1 _ pl 1 _ 2 _ p2 2 _ .

e Rl =R} +rl =0.01, R = R + r? = 0.008;

. n%:nézl,nlzn}+n%+1:2;

e Ul =Rl + a,/(2><1nn1)/(n} +1) = 0.052, U} = R} +
ay/(2 xInnt)/(n} +1) = 0.050, U}, UL, UL = 0.059.

[Iteration 2.] In this iteration, it randomly selects one from those with
the largest UCB values (i.e., {C3, C4,C5} because their UCB values
are 0.059 after the 1st iteration), say Cs is picked. After re-training
and evaluation, we observe a model performance decrease of 1%. We
will not add this mini-batch to the train data, i.e., Tf =T .
rain train
Suppose N(Cs) = {Cz,C3,Cs}, d(Cs,C2) = 0.3 and d(C5,C3) =

0.25. All values are updated similar to above.

[Iteration 3.] In this iteration, it will pick Cy4, the one with the largest
UCB value after the 2nd iteration. After re-training and evaluation,
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Figure 5: A running example of UCB-based MAB algorithm.

we observe a model performance increase of 2%. It will add this mini-

batch as T,g’ . and update all values.
rain

Example 9 shows how the UCB-based MAB solution works
for AutoData. Moreover, it illustrates the exploitation-exploration
trade-off. For example, even if at iteration 1, it observes a perfor-
mance increase using a mini-batch sampled from Cy, it still explores
other clusters at the next iteration.

Remark. When there are several clusters having the same UCB
values, what is described above is to randomly pick one. Another
intuitive option is to pick the one whose distance is the closest to
Ttrain, Which is a more conservative choice.

5 DON-BASED RL FOR AUTODATA

The above MAB-based solution leverages a heuristic search method
to retrieve data based on the human-provided criteria with fixed
parameters, which is not generalizable enough and hard to reach
the optimal solution. DQN-based RL is a more powerful and robust
framework in such a dynamic setting.

5.1 Bridging RL and AutoData

Reinforcement learning (RL) is an ML paradigm where an
agent learns from the feedback by trial-and-error interactions with
the environment. A typical example is the AlphaGo [55] where
the agent considers the current state (i.e., the board situation in the
Go game), and then predicts the next optimal action (i.e., where the
next piece goes on the board) because the action can bring about
the highest reward, i.e., the largest probability to win the game.

Bridging RL and AutoData. As discussed in Section 3.2, selective
data acquisition needs to (1) update the search criteria, and (2)
get feedback from evaluating the new mini-batch. Hence, there is
a natural connection between RL and AutoData for the problem
of selective data acquisition. The train data Tirain at the current
iteration is considered as the state. The action represents whether
to select and keep/drop a mini-batch of new train data, decided
by an agent. The environment will re-train the model so as to

evaluate the benefit of keeping/dropping a mini-batch, based on
which a reward will be calculated.

5.2 Solving AutoData with RL

State s¥ represents the situation of the train data T'frain at the k-th
training iteration in each episode. Different from the MAB solution,
we take the data distribution of Tfrain into account and encode it
as the state, for more fine-grained optimization.

Recall that g is the number of clusters, i.e., g = |C|. We can map
each data point O € Ttkrain to a g-dimensional vector. Moreover, let
pé) be the probability that O will be in C;, and thus each data point

corresponds to a probability vector with length g. In this way, the sk

can be represented as a |Ttk .| X g matrix. It has two limitations. (1)
rain

At every iteration the size of Ttkrain changes, so does the dimension
of sk, which is difficult for a neural network to train. (2) The matrix
can be large, so the model training is hard to converge. To address
the limitations, we need a representation of the state that has a
fixed and relatively small size.

(1) [Initialization.] Initialize G; as an empty set @ (i € [1, g]), which
denotes the set of train data in Técrain that should belong to C;.

(2) [Partition train data.] For each data point O € Tfrain
pute the most likely cluster that it should belong to (e.g., cluster
Cj), and then add O to Gj as G;j = G; U {O}. After doing this for all

. .k
data points in Ttrain’

, We com-

G1, ..., Ggq are partitions of Ttkrain’
(3) [Representation of state.] We compute the mean (yg,) and co-
variance (2g,) of each G;, and use the triple (yg,;, Zg,, |Gil) to
represent G;. Suppose that each data point has m attributes, and
thus the dimension of g, (ug,) is m?(m). Hence, the represen-
tation of state s¥ has size O(m?) x g. Dimensionality reduction
techniques [59] can be utilized if the matrix is too large.

ExaMPLE 10. [State.] As shown in Fig. 6, to represent the state, we
map data objects in Ttkrain(with four objects) to the data pool P. And
we can see that there are one data point in Gy, one in Gs, and two in
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Figure 6: A running example of DQN-based RL solution.

G3 (@). Therefore, we compute the means and covariance matrices for
these three sets of data. For Ga and Gy, since there is no data here, we
fill the vectors and covariance matrices with zeroes. Then we obtain
the state encoding sk of current Ttkrain ).

Action a¥. For each cluster, we have two choices, either to sample
a new mini-batch from it, or to delete a mini-batch of data points
selected from this cluster in previous iterations. There are g clusters,
so there are totally 2 X g possible actions. Note that, if all data points
of a cluster have been added, we will mask out the action acquiring
from the cluster.

EXAMPLE 11. [Action.] Given the state s¥, the agent uses the Q-
network to select an action to be executed next. At a high level, we
have two options for each C;, i.e., add a mini-batch of data from C;
to Tirain Or delete a mini-batch of data points that are previously
selected from C;. Thus, the action space is2X g, i.e., 10 in the example.
But note that not every action is valid, e.g., there is no data belonging
to Cy and Cy, so the actions “delete Cy” and “delete C4” are masked.
Suppose that the agent chooses the action “add C1” and sends this
action to the environment (©).

Reward r* is calculated through the performance difference of the
ML model between the (k — 1)-th iteration and k-th iteration, i.e.,
M(Tfrain’ Tval) = M(Ttlcrglin’ Tval)-

EXAMPLE 12. [Reward.] Continue with Example 11, a mini-batch is
sampled from C1 (@) and added to Tk

train’
and obtain 1% improvement (@), which is regarded as the reward r*.

Then the model is retrained

State update. After an action is applied, Ttrain Will change, and
thus the state will be updated. Note that we acquire data points
from a single cluster (e.g., C;) or delete from G;, so in each iteration,
we just need to update a small part of state representation, i.e., the
triple of G;.

ExAMPLE 13. [State update.] Following Example 12, the state will
be updated after data points from Cy are acquired, i.e., changing the
mean, covariance matrix and the number of data points of G1. Then
new state s**1 and reward r* (@, for updating the Q-network) will
be sent to the agent for the (i + 1)-th iteration (@).

Environment encodes the train dataset as state by capturing the
data distribution. Besides, given an action, it adds (resp. deletes) a
mini-batch of data to (resp. from) the train dataset and re-trains the
model. Furthermore, environment evaluates the reward and sends
it as a reinforcement signal to agent.

Agent takes into account the situation of the current train dataset
(i.e., current state), and chooses an action according to the reward
estimation of the expected long-term reward. After receiving the
reward of each iteration, the agent uses the memory pool to manage
these experiences and conducts the learning process.

Vanilla Q-learning. The typical RL framework is Q-learning [57],
which is based on Q-function. Q-function can be viewed as a state-
action value function of a policy , namely Q-value and denoted by
Q7 (s, a). It measures the expected long-term rewards obtained from
state s by taking action a first and following policy x thereafter.
We aim at selecting the optimal action that leads to the largest
long-term reward by Bellman optimality equation, i.e., Q*(s,a) =
E[r + y max), Q*(s’, a’)], where r is the immediate reward, y is
the discount factor and Q*(s’, a”) denotes the following optimal
Q-value from the next state s”. A vanilla Q-learning approach uses
a Q-table [24] to store the Q-value of each state-action pair.

Algorithm 2: A DQN-based RL Training Algorithm

Input: C, Ttrain, Tval, M, # of training iterations t/ episode
Output: a trained RL model
for each episode during training do
for k from1 tot do
state sk = is computed using (Ttrain, C) ;

action a* = max, Q(sk, a; 0);

// delete/add a mini-batch
Apply a* to update Ttlf-ain ;
Re-train and compute a reward rk, which will be used to
update Q-network;

[ N I

N o

8 return the RL model

Deep Q-Network (DQN). Using a Q-table [24] is impractical
for our problem, because our states (i.e., training data distribu-
tion in each iteration) are impossible to enumerate. Therefore, we
adopt DQN [37, 38] that trains a function approximator, such as a
neural network with parameters 6, to estimate the Q-values, i.e.,
0O(s, a; 0) ~ Q*(s, a). It can automatically attempt to learn the op-
timal combinatorial space of different mini-batches from multiple
clusters, leading to a data acquisition strategy with high perfor-
mance improvement.

Algorithm. Algorithm 2 illustrates how to train a selective data
acquisition model using RL, which consists of multiple training
episodes. In each episode we have t iterations, where different
actions are tried and the feedback is used to train the model. Specif-
ically, in each iteration, the algorithm first computes the state repre-
sentation s¥ of the train data (line 3). Then, based on the trained Q-
network, it selects the optimal action a¥ with the largest long-term
estimated reward (line 4). The action is to either add a mini-batch
to Tfrain or delete a mini-batch from T’frain' Afterwards, it applies
the action (line 6), re-trains the ML model and computes a reward
that will be used to update the Q-network (line 7).



Discussion about DQN training. In our framework, we use an
off-policy [39] strategy to learn the target policy a = max, Q(s, a; 0)
while a different behavior policy (i.e., e—greedy) runs for collecting
data in the environment. It is called off-policy when behavior policy
# target policy. It selects the greedy action with probability 1 — €
and a random action with probability € to ensure good coverage of
the state-action space. Since DON is off-policy, we use experience
memory replay for Q-Network training. In order to break the tem-
poral correlation between actions and avoid forgetting the rare but
valuable experiences, we use the memory replay technique [37] to
store the experiences observed by the agent, and allow the agent
to reuse these experiences later.

DON inference. During inference, we also have a total acquisition
number of iterations k as input. Then at each iteration, we repeat
the lines 3-7 in algorithm 2 except updating the network in line 7.

Note that, once the model is trained, it can be used for selecting
data points for the same supervised ML task but the dataset is
not necessarily the same. Consider Fig. 3 for example, the model
learned by using the data in Fig. 2 (i.e., city Kolkata) can be used
for acquiring data for house price prediction of other cities (e.g.,
Bangalore, Mumbai, and Delhi).

Take-away of MAB and DQN based methods. The MAB-based
solution is easy to implement and efficient. The DQN-based solu-
tion can achieve higher performance improvement but spends long
time on training. Therefore, by default, we choose DQN-based solu-
tion because it can achieve higher performance improvement and
effectiveness is typically the main concern. However, if efficiency
is the main concern, the MAB-based solution is a good alternative.

6 EXPERIMENT

Datasets. We used 5 real-world datasets (HR, House, Image-6,
Image-10, Credit) to evaluate our proposed framework. Table 1
shows the statistics. HR, House and Credit are tabular data.
Image-6 and Image-10 contain images, as shown in the “Type”
column. The train/validation/test split of the three datasets is also
shown in the column “|T¢rainl/|Tva1l/| Ttest|™

For each dataset, we conducted an end-to-end experiment.
For tabular data (HR and House), we used the NYU Auctus
API [45] to search using Tirain- Specifically, we used the API
Datamart.search_with_data(supplied_data) to search union-
able datasets, where supplied_data is replaced with T¢rain. Then
we used DatamartSearchResult.download to download these
datasets that have high overlapping attributes with Tirain, Where
the schema alignment has been done. As discussed in Section 3, if
the searched datasets do not have an aligned attribute with Ttrain,
we use NULL values for this attribute. In Table 1, “# Sel. Src” de-
notes the number of retrieved tables that could be well integrated
with the train data. Note that other popular dataset search toolkits
(e.g., Aurum [20], Google dataset search [22]) can also be incorpo-
rated into our framework. They can find relevant datasets given
a keyword-based but not dataset-based query, thus is not directly
suitable for unionable dataset search. In practice, some wrappers
w.r.t. some schema alignment techniques [42] need to be developed
in order to incorporate these toolkits. We used all the data points
in selected sources as the pool. The total number of points in the
pool is given in the “|P|” column. Details are as below.

Table 1: Statistics of datasets.

Dataset Type |Ttrain|/|Tval |/ | Ttest| | # Sel. Src |P|
HR Tabular 1200/400/400 5 21287
House Tabular 1620/425/425 5 32963
Image-6 Image 2300/700/700 3 62000
Image-10 Image 5400/2100/2100 5 87400
Credit Tabular 11200/4000/4000 4 126300

(i) HR is a dataset with a classification task of “predicting whether
an employee would change the job”. # of train, validation and test
points are 1200, 400 and 400 from Finance Dept. respectively. Five
other departments (i.e., Sales Dept., International Dept., Purchasing
Dept., Marketing Dept. and Technology Dept.) can supplement the
train data because they have similar schema with the train data, and
thereby retrieved by the NYU Auctus APIs. We have 12 attributes
after alignment and 21287 data points in the pool.

(ii) House is a dataset of “predicting house price” (a regression task)
in India, and # of train/validation/test points was 1620/425/425 from
Mumbai. We found five tables from different cities (i.e., Bangalore,
Chennai, Delhi, Kolkata and Hyderabad) that could be integrated
with train/test points. We have 39 attributes and 32963 data points.

(iii) Image-6 is to classify a collection of images, and totally,
there are 6 categories {Dog, Tiger, Cat, Lion, Rabbit, Pig}. Unlike tab-
ular data, image data does not need schema alignment. We crawled
2300/700/700 train/valiadation/test points from Google.com. For
external sources, we used images from many sources. We used
62000 pictures from Imagenet [25], Caltech-256, Bing [4] as the
pool. For public datasets (e.g., Imagenet and Caltech), we only used
the images that fall into the six categories. For web-based APIs
(e.g., Bing image search [4]), we only retrieved the images using
the above categories within the limit of free API calls.

(iv) Image-10 is a dataset for image classification task, which has
10 categories, ie., {binoculars, cake, calculator, eyeglasses, knife,
mushroom, octopus, rainbow, snake, spoon}. The sizes of train/vali-
dation/test points are 5400, 2100 and 2100, respectively, which are
crawled from Google.com. There are 87400 images in $, which are
from Baidu, Imagenet [25], Bing [4] and Caltech-256.

(v) Credit is a classification dataset, whose task is to predict
“whether the loan will be deferred based on a person’s economic
situation”. The sizes of train, validation and test dataset are 11200,
4000 and 4000, respectively. We have 11 attributes after alignment
and 126,300 data points in the pool.

Evaluation Metrics. We used two different metrics, Area Under
Curve (AUC) for classification (HR, Image-6, Image-10, Credit)
tasks, and Mean Squared Error (MSE) for regression (House) task.

(I) AUC indicates a model’s capability to distinguish between classes,
where the AUC value is the area under the Receiver Operator Char-
acteristic (ROC) curve.

(IT) MSE is used to evaluate the performance of the regression model.
It takes the distances (these distances are the “errors”) from the nor-
malized points of ground truth (y) to the regression line (Y edict)
and squaring them, i.e., MSE = % >riy- ypredict)z. The lower
the MSE, the better the prediction.
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Figure 7: Effectiveness of selective data acquisition.

Solutions. We compared AutoData with a variety of typical al-
gorithms. Almost all methods (except ALL) select data iteratively,
and in each iteration, the same size of mini-batch of data points is
acquired. Note that for our methods, we could either add or remove
one mini-batch in one iteration.

(1) ALL simply adds all data points from P to Tirain-
(2) Random randomly selects a mini-batch per iteration.

(3) Uncertainty-based active learning (U-AL) is an active learn-
ing based method, which selects data points with the largest uncer-
tainty measured by the trained model iteratively.

(4) Error-based active learning (E-AL) is another active learning
strategy, which considers how much error would incur if a data
point is acquired and added for retraining. Since typical active learn-
ing methods cannot know label in advance, it only compute the
expected error induced by each data point [51]. But in our scenario
(data points in P had labels), we could exactly know whether cur-
rent model predicted correctly or not, so we just added a mini-batch
of points that were incorrectly predicted to T¢rain in each iteration.

(5) Outlier-based active learning (0-AL) considers the active
learning scenario that the fetched data points (with high uncer-
tainty) maybe outliers for the train data [30]. Therefore, it first
removes the data points that have rather different distribution from
train and then conducts the active learning.

(6) Coreset-based active learning [54] (CS-AL) iteratively selects
a subset of unlabeled data points (i.e., the coreset) to label. In our
scenario, we select the coreset from % using their method without
considering the label.

(7) Similarity search (SS) searches points of P that are the closest
to Ttrain, adds them to Tirain and retrain iteratively. The distance
between a data point o in  and Tirain is measured by the average
Euclidean distance between o and all points in T¢rain-

(8) RL-based data valuation [62] (RL-DV) uses an RL model to
learn a valuation score of each data point. The higher the score, the
more benefit the data point has for the ML task, and thus the data
point should be selected.

(9) Exploitation-only (EO) first fetches a mini-batch of data points
from each cluster in the pool, and then keeps sampling from the

cluster that has brought the most performance improvement, with-
out the change of exploration.

(10) AutoData-MAB. This method is the algorithm using Upper Con-
fidence Bounds based MAB solution (Section 4).

(11) AutoData-DQN is the DQN-based RL solution (Section 5). To
train the RL model (Algorithm 2), we set a maximum number of
episodes of training, say 600. Each episode consisted of a series of
actions, the corresponding states and rewards. The training process
of RL model consumed around 2.5 hours and 3.8 hours on HR and
House, respectively. On Image-6 dataset, we used the pre-trained
model (i.e, Resnet50) for the image classification task, and the
training process totally consumed about 6.3 hours.

Note that when comparing AutoData-DQN with other solutions
in Section 6.1, the model has been trained and we compared the in-
ference results (DQN inference in Section 5). For training process,
we will provide more details in Section 6.2.

Hyper-parameter setting. We set 7 in the AutoData-MAB as 0.5.
For AutoData-DQN, we used 4 fully connected layers, and we set
t = 20. In addition, € = 0.95 and we use exponential decay pol-
icy to decrease €. We used XGBoost and XGBoost Regression as
downstream models for the two tabular dataset HR and House.

6.1 Efficacy of Selective Data Acquisition

Can selective data acquisition from external sources help supervised
ML? We quantitatively evaluated the above ten solutions and the
result is shown in Fig. 7. The x-axis denotes the number of iterations
for selective data acquisition. The y-axis denotes the evaluation
metric: for Fig. 7 (a) and (c), AUC is used (the higher the better); for
Fig. 7 (b), MSE is used (the lower the better).

Effectiveness on HR (AUC). The result is shown in Fig. 7 (a), which
tells us the followings.

On this dataset, all methods can improve the model performance
through data acquisition, i.e., along with the increasing number of
iterations, the AUC values of all methods increase. At the beginning,
the AUC begins to increase rapidly, and then gradually slows down.

Among the baselines, Random, SS and EO do not perform well
(73.8%, 75.2% and 74.4% respectively after 25 iterations). The reason
is that Random is simple that does not consider any factors influenc-
ing the ML task. For SS, it only retrieves similar data with Tirain
without considering the performance, and loses the opportunities



to explore the pool for approaching the true distribution of the ML
task. For EO, although a certain cluster performs the best under
the state of initial train set, it is far from enough to use the cluster
to represent the data distribution of underlying ML task, which is
likely to be more complicated than the distribution of a single clus-
ter. Besides, ALL (74.6%) does not perform well either. This verifies
that simply acquiring all available data points is likely to involve
many “outliers” that are not beneficial to the performance, and thus
selective data acquisition is necessary.

Active learning based methods outperform SS because they con-
sider the uncertainty or prediction errors of data points. For exam-
ple, U-AL (E-AL) achieves an AUC of 76.8% (76.2%). E-AL is worse
than U-AL because the pool has many heterogeneous points that
are not beneficial for the model, and the model can not predict them
accurately. Therefore, these points are acquired, which results in
low performance. CS-AL only achieves 77.4% AUC because it aims
to select the coreset that is the representation of the training data,
rather than improving the model performance. Hence, the coreset
selection does not consider how the model performs on the valida-
tion or test set. Naturally, it cannot perform well when there is not
enough training data and the data distributions of training and test
data are different. It also shows that 0-AL (78.2%) performs better
than U-AL because O-AL first removes the outliers (distribute much
differently from points in Ttrain) in the pool.

Reinforcement learning-based data valuation (RL-DV) achieves
only 75.9% AUC because it mainly focuses on retrieving data points
from a homogeneous dataset, but selecting data points from our
heterogeneous pool is likely to introduce many noise and leads to
instable training. Another possible reason is that in each training
iteration, RL-DV just randomly samples a batch of data points in
the pool, and thus the points between iterations are irrelevant. But
during training, we select data points considering the historical
experience, including incremental data acquisition and deletion.

AutoData-MAB and AutoData-DQN outperform baselines, with
AUC 79.3% and 81.2% respectively. The reasons are two-fold. First,
our methods directly consider the performance improvement or
degradation to guide the acquisition. Second, we carefully model the
relationships among data points in the pool and use an exploration-
exploitation strategy, based on which we acquire data iteratively.
The DQN-based method AutoData-DQN is better than AutoData-
MAB because (a) it considers the intrinsic characteristics of train
data points by encoding them as state, which can be regraded as a
key feature, and (b) it uses the more powerful DQN model to update
the search policy, which is more flexible.

Effectiveness on House (MSE). The result is shown in Fig. 7 (b).
Different from the AUC value in Fig. 7 (a) that is the higher the better,
for MSE in Fig. 7 (b), it is the lower the better. Hence, it shows that
these methods had similar trends that different methods can im-
prove the model performance along with the increasing number of
iterations. Note that we did not plot U-AL because it is not practical
to measure the uncertainty for the regression task. For example,
AutoData-DQN achieved a MSE of 0.209, which outperformed E-AL
(0.241), 0-AL (0.250), SS (0.246), EO (0.255), CS-AL (0.248), RL-DV
(0.240) and AutoData-MAB (0.226) due to its high generalization and
learning ability. E-AL outperforms O-AL because some beneficial
points were wrongly removed in 0-AL. AutoData-MAB outperforms

Table 2: Efficiency (seconds).

Method HR House Image-6 Image-10 Credit
Random 4.27 5.28 10.69 19.87 23.27
U-AL 11.49 - 34.77 54.73 61.76
E-AL 10.61 23.28 32.52 49.87 58.81
O-AL 13.29  26.52 40.28 75.28 93.73
CS-AL 12.79 25.37 37.14 58.33 73.24
RL-DV 45.38  93.62 114.56 136.85 133.19

SS 36.24 70.23 106.25 113.64 127.85
AutoData-MAB 4.76 10.64 15.35 21.92 26.45
AutoData-DQN 5.72 12.78 17.47 26.67 29.87
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Figure 8: AutoData-DQN: No-adaptation vs. Adaptation (HR)

other baselines because it selectively acquires data based on the
performance feedback.

Effectiveness on Image-6 (AUC). The result is shown in Fig. 7 (c).
It shows AutoData-DON still performed the best, with 85.1% AUC.
The difference is active learning methods perform worse than SS.
The reason is that for the image dataset, images in the pool is much
more heterogeneous than the above two tabular datasets, so active
learning methods are likely to acquire many unhelpful objects.
Even worse, if they acquire more and more points, the performance
would degrade because they contain more noisy train points.

Effectiveness on Image-10 (AUC). As shown in Fig 7, we can see
that AutoData-MAB and AutoData-DQN significantly outperforms
other baselines, achieving AUC of 78.3% and 80.8%, respectively.

Effectiveness on Credit (AUC). As shown in Fig. 7, we find the
AutoData (79.2% of MAB and 80.4% of DQN) significantly outperforms
the active learning-based methods, RL-DV, SS and Random.

Efficiency. Table 2 shows the efficiency of different methods on
3 datasets for 15 iterations (i.e., k = 15). We can see that Random
is the fastest because it does not need complex computation. AL-
based methods are much slower because they need to train the
downstream model and iterate the points in the pool for prediction,
so as to choose the acquired points. SS is the slowest since it needs
many high dimensional vector computations, although one can use
the index [26] to accelerate it. RL-DV is also slow because it needs
to iterate through the points in the pool, compute the valuation
scores, and select the ones with high scores. Moreover, the training
process of RL-DV is rather slow (more than 30 hours for Image-6
dataset) because it needs to train a number of sampled batches
of data points, in order to obtain an accurate valuation score for
each one. Since the pool is always large, it is always impractical
to conduct this method for data acquisition in the wild. For our
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methods, AutoData-MAB performs fast because it does not need to
iterate the pool, and also does not have complex computations.

Summary. AutoData-MAB and AutoData-DQN outperform the other
competitors (Fig. 7), and both are efficient for selecting data points
(Table 2). However, AutoData-DON may need extra training time
for a new supervised ML task (see Section 6 Solutions—10), which
is automatic and thus practically feasible.

6.2 AutoData-DQN: No-adaption vs. Adaption

Can we apply a trained AutoData-DQN model for a new dataset from
the same domain?

No-adaption. Consider the model that was trained, validated and
tested for Finance Dept of the HR dataset as mentioned in Section 6.1.
Next, we wanted to perform the same ML task, but on a different
dataset, for which we used a HR Dept table with similar number
of train/validation/test points as Finance Dept. Fig. 8(a) provides
the result, where the x-axis denotes the number of iterations and
the y-axis denotes the metric AUC. It shows that even by directly
applying a trained model for a dataset from the same domain, it
(i.e, the “no-adaption” line) still outperforms AutoData-MAB. The
“no-adaption” line performs slightly worse than we train the model
for the new dataset, i.e., the “learn-from-scratch” line, as expected.

Adaption. Instead of learning from scratch, next we examine
whether we can adapt the model trained from a different dataset
but in the same domain. Fig. 8(b) shows the result, where the x-
axis denotes the number of iterations for the training process of
AutoData-DQN and the y-axis denotes the metric AUC. It shows that
if we adapt a pre-trained model (i.e., the “adaptation” line), it will
take much less episodes (i.e., less than 200) to converge, compared
with the “learn-from-scratch” approach (i.e., above 500).

Summary. Directly applying a trained AutoData-DQN model works
well for a new dataset from the same domain. Adapting the trained
model for the new dataset takes much less time than training a
model for the new dataset from scratch. The two observations verify
the good generalization ability of AutoData-DQN.
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Figure 11: Different clustering strategies
6.3 Sensitivity Analysis

Varying the size of mini-batch. Typically, we can regard the size
of mini-batch as a hyper-parameter tuning problem. We evaluate
the relative sizes 5 (ﬁ, %, %, 1—10, % respectively) of the mini-
batches and training set. We use the training and validation set
during the evaluation process. Experimental results are shown in
Fig. 9, where the x-axis is 1 and y-axis denotes the metric (AUC
and MSE). We can see that for AutoData-DQN, when 7 is small, it
does not have much impact on performance, but more iterations
are needed to acquire data from pool, which is time-consuming.
When 7 is too large, the performance decreases because some noisy
data points are incorporated. In addition, we find that AutoData-
MARB is more sensitive to 77 than AutoData-DQN. The reason is that
AutoData-DQN can remove more noisy points using the deletion
action. Concretely, we can see that on the three datasets, 1 = % is
the best choice considering both the effectiveness and efficiency. For
example, on HR, when n = %, AutoData-MAB and AutoData-DQN
can achieve the AUC of 79.5% and 81.2%, respectively.

Varying reward computation methods. We have added 3
different choices of different reward computation methods. (1)
No-assign does not assign the score to any other neighbours when
a cluster C; is assigned with a score, i.e,r; = Aand allof r; = 0
when j # i. (2) Assign-without-7 does not have the distance
threshold 7. Once a cluster C; is assigned with a score, we distribute
it to all clusters based on the their distances with C;, i.e, r; = A and
rj = AX(1-d(Ci, Cj)/Dmax), Cj € C,where Dy, qy is the largest dis-
tance among pairs of clusters in C. (3) Assign-equally-within-r
equally distributes the score to neighbours with distances within
7, once a cluster C; is assigned with a score,ie, r; = r; = A, if
Cj € N(Cy). Otherwise, rj = 0 when C; ¢ N(C;).

As shown in Fig 10 (the y-axis denotes the metric (AUC and MSE)),
on three datasets, AutoData achieves the best performance. For
example, on HR dataset, the AUC of AutoData is 79.3%, which is
better than that of Assign-equally-within--7 (75.9%) because
the latter one does not distinguish the neighbour clusters of C;,
which leads to inappropriate reward assignment. AutoData also
outperforms No-assign (74.7%) because it totally ignores the rela-
tionships between other clusters with C;. For Assign-without-z,
AutoData performs better because the baseline inappropriately dis-
tributes the reward to clusters that are far away from C;, but they
almost have no relationship with C;.

6.4 Comparison of Clustering Methods

Clustering vs. No-clustering. We first verify whether clustering
is necessary. We design a baseline that does not cluster over the P,
but just regards each dataset as a “cluster”. As shown in Fig. 11 (the



Bz GMM B8 DBSCAN EEE MeanShift

MSE(The lower, the better)
AUC(The higher, the better

AUC(The higher, the better)

(a) HR (b) House (c) Image-6

Figure 12: Performance improvement of clustering algo-
rithms (k = 20).

x-axis denotes AutoData-MAB and AutoData-DQN and the y-axis
denotes the metric AUC and MSE), this method performs worse than
us a lot. The reason is that data points in the wild are heterogeneous,
and thus not all of them can help. Hence, we cannot distinguish
helpful data points without clustering.

Comparing different clustering algorithms. We evaluate the
performance of different typical clustering methods, including
GMM [21], DBSCAN [19] and MeanShift [14], for clustering the
data points in #. Recap that in Section 3.2, our RL-based solu-
tion needs the statistics of each cluster (i.e., means and covariance
matrices) to capture the relationship between the clusters via the
distance between them. Using GMM, the Gaussian distribution of
each category can be naturally obtained when clustering. But for
the other two algorithms, we need to calculate corresponding mean
and covariance matrix for each cluster separately after clustering.

Settings. The clustering result is affected by the parameters of the
clustering algorithms and we can use different methods to select
proper parameters. For GMM, we can use AIC score [1] to determine
the appropriate number of components(g). For DBSCAN, there are
2 key parameters: (1) eps (the radius of a neighborhood w.r.t. some
data points) (2) minPts (a data point is considered as a core point
if at least minPts data points are within eps of it). They can be set
using the method in [53]. Mean-Shift is a centroid-based method
that updates the centroids to be the mean of the points within a
given region. The size of the region is controlled by bandwidth,
which can be set by the bandwidth estimation [56].

Effect of different clustering methods. The result is shown in Fig-
ure 12, where the x-axis denotes AutoData-MAB and AutoData-
DQN, the y-axis denotes the metric AUC and MSE. We can see that
using different methods can affect the performance of AutoData-
MAB and AutoData-DQN, and GMM can obtain the best perfor-
mance. For example, on Image-6, AutoData-DQN has the AUC 85.1%
with GMM clustering, better than DBSCAN (81.9%) and Mean-Shift
(82.5%). This indicates that GMM is a more robust clustering method,
mainly because it can well handle heterogeneous data from differ-
ent sources, while DBSCAN and Mean-Shift cannot perform well
on dataset with large variances in densities.

7 RELATED WORK

Active learning. Active learning [16] interactively selects unla-
beled data points just from T and queries users to label them. Dif-
ferent criteria can be used to select these points, such as the most
informative ones [3, 33] or the most confusing ones [52]. We have
tested 4 active learning methods and shown that our methods were
better (see Section 6.1 and Fig. 7).

Coresets. Coresets [36, 63] study the problem that given a full
training labeled data, how to select a small subset from it such that
training on the small set performs on par with the full training set.
The goal is to make the training efficient, rather than considering
whether the model performs better on the ML task. Thus, they
study a very different problem from us (with different goals), and
the solutions are naturally different.

Data acquisition for model fairness. There have been works [40,
58] that use data acquisition to improve model fairness. For the
fairness of ML models, what is a fair model is pre-defined based on
groups, e.g., the desired target distribution is given. Different from
them, our problem is to train a good ML model that can generalize
without knowing the target distribution.

Data acquisition for model performance. Closer to our work
is [31], which tries to search labeled points by querying data mar-
kets. However, it assumes that the datasets have the same true data
distribution of the ML task at hand, which is hard to guarantee.
Moreover, it assumes that buyers can iteratively issue SQL queries
by varying predicates and purchase slices of datasets, which are
not yet widely supported by data markets. Another close work [62]
is data valuation using RL, which assigns a valuation score for
each point. The higher the score, the more likely the points will be
added to the train set. However, it focuses on selecting points from
homogeneous datasets, while not from heterogeneous ones.

Other database techniques w.r.t. ML. Data preparation [7-9]
can be utilized to improve the effectiveness of ML model, including
data discovery [32], data cleaning [5, 23, 33, 34], data labeling [6, 10—
12, 17, 28, 29] and data exploration [47, 48]. Also, ML techniques
can also be used to optimize the database [27, 65, 66], such as query
optimization [61, 64, 67].

8 CONCLUSION

We study the problem of selective data acquisition in the wild for
model charging, which makes an attempt to verify our hypothesis
that whether we can boost the model performance by selecting
data points from data that is publicly available. The main challenge
is that data in wild is messy and many of them are noises that
cannot help a downstream ML task. We propose an end-to-end
framework, and two solutions, namely MAB-based AutoData and
DQN-based AutoData. We have experimentally verified that our
proposed methods can help select data points.
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