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Abstract—Sufficient good features are indispensable to train
well-performed machine learning models. However, it is com-
mon that good features are not always enough, where feature
augmentation is necessary to enrich high-quality features by
joining with other tables. There are two main challenges for the
problem. Given a set of tables where we can augment features
from, the first challenge is that there are a lot of ways of joining
multiple tables and deciding which features (or attributes) to use
– selecting the best set of features to augment is hard. Moreover,
we may need to materialize the join results for different join
options, doing full materialization might be time consuming –
efficient but approximate methods are needed.

In this paper, we first introduce the design space of the feature
augmentation problem. Then, to address the above challenges,
we propose a reinforcement learning based framework, namely
AutoFeature, to augment the features following an exploration-
exploitation strategy. AutoFeature keeps exploring the features
in tables that have led to performance improvement. At the
same time, AutoFeature also exploits the tables (features)
that are rarely selected. In this way, the search space of
tables (features) to be augmented can be well explored and a
subset of good features can be selected. AutoFeature utilizes
sampling techniques to achieve high efficiency. We implement two
algorithms, one with multi-arm bandit and the other with branch
Deep Q Networks (branch DQN), to realize the framework
of AutoFeature. We conducted experiments on three real-
world datasets School/XuetangE/Air using 16/23/34 candidate
tables with 695/204/338 candidate features. Extensive results show
that AutoFeature outperforms other methods by 12.4% and
9.8% on AUC values on two classification datasets (School and
XuetangE) and by 0.113 on the MSE value on Air in terms of
the model performance.

Index Terms—Feature Augmentation, Machine Learning

I. INTRODUCTION

A machine learning (ML) model is only as good as the
data (and features) that it is trained on. However, it is not
uncommon that the training data (even from experienced data
scientists) may not always contain sufficient good features.
For example, assume that a data scientist from the payment
team in Ant Group wants to predict whether a user is a
scammer or not, although she might be able to quickly collect
useful information (features) from her domain (such as basic
user profile, payment transaction history, etc.), there is plenty
valuable information outside of her domain (possibly even out
of her awareness) that is also useful (such as credit data or
LBS data).

In this case, the initial training data that she prepared is
sub-optimal, and it is desirable to augment the initial training
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dataset with useful features from other domain. We call such
a process feature augmentation.

Feature augmentation includes two steps: deciding which
tables can be used to provide more features through “Join”
operations, and selecting which features should be used.

The first step can be done by either domain experts who
specify which tables to join and how to join them, or piggy-
backing existing data discovery tools [1], [17], [18] to find
joinable tables. Note that, in either case, human-in-the-loop is
typically inevitable.

Therefore, the main focus of this paper is on step 2, i.e.,
given an initial training set and a set of tables that may contain
useful features, decide which features (from those tables) could
be selected to augment the initial training data.

Challenges. There are two main challenges. (1) Effectiveness.
How to select an optimal subset of features for augmentation?
(2) Efficiency. Join operations could be time-consuming, es-
pecially when we might need to join many tables in different
orders. Hence, how to make the overall feature augmentation
process efficient is important.

Existing work and their limitations Existing research has
attempted to approach this problem from two perspectives. (I)
Join-or-not [27]. The basic idea is that they avoid joining
tables that do not significantly affect the prediction accu-
racy, based on the Vapnik-Chervonenkis (VC) dimension of
downstream ML algorithms, when the foreign key has already
included all the information of the tables to be joined. (II)
Finding top-k relevant tables [14]. ARDA computes a score
for each candidate table, selects top-k tables, and joins them
with the base table for feature augmentation. However, the
score of a candidate table is simply based on its relevance to
the base table [1], [17], rather than the model performance.

Their limitations. (I) solved the problem of given features
that can be used for augmentation, whether these features
should be used or not, which does not solve how to discovery
these features in the first place. (II) selected tables and features
based on relevance, without measuring their practical impact
on the particular ML task. Consequently, it is hard for this
heuristic approach to obtain the optimal feature augmentation
in terms of the model performance.

Design space. In order to find the optimal solution for feature
augmentation, we have to carefully explore the large search
space that consists of the candidate tables (as well as the
contained features), with the consideration of the model per-
formance in mind. There are several straightforward solutions
to explore the space.



(i) Forward selection is an iterative method which uses
a greedy strategy to select new features. In each iteration,
it evaluates each feature by joining the corresponding table
and selects the feature which best improves the model perfor-
mance.

(ii) Backward selection is also a greedy method. It joins
all candidate tables and starts with all features in the dataset.
It then iteratively removes the feature with least impact on
predictive performance at each iteration.

Although the above methods (i and ii) can explore the
search space to some extent, it is difficult for them to discover
good tables (features) combination due to their simple and
heuristic search strategy. The reasons are two folds. On the
one hand, they just add (or remove) one feature at a time, and
thus it is unable to sufficiently explore the search space of
features. Therefore, they are not accurate enough to evaluate
the importance of each feature. Thus, some potentially bene-
ficial features cannot be augmented. On the other hand, they
use greedy augmentation strategies and do not consider the
relationship between features. Features from different tables
will influence each other. Thus, they fail to discovery useful
feature combinations. In this work, we employ a trial-and-error
strategy that keeps refining the search criteria, in the pursuit
of the optimal solution.

Our Methodology. To judiciously explore the table/feature
space, we propose a reinforcement learning based feature aug-
mentation framework AutoFeature, which adds features to
augment features using an exploration-exploitation strategy.
At a high level, AutoFeature iteratively augments tables
as well as features in a model-aware, trial-and-error approach,
to progressively understand which table (feature) or table (fea-
ture) combination is good. To be specific, based on the model
feedback during iterations, we should exploit the features in
tables that have brought much performance improvement, so
as to further maximize the model performance. However, we
also have to explore the rarely selected tables (features) to
avoid local optimum.

Contributions. We make the following contributions.
(1) We explore the design choices of feature augmentation,

including the Forward, Backward and RL-based approaches.
(2) We propose a multi-armed bandit (MAB) based RL

solution, which is a simple yet effective approach that uses the
standard MAB method to tackle the exploration-exploitation
dilemma, where each table can be regarded as an arm and
pulling the arm (i.e., an action) means to join the table for
feature augmentation.

(3) We propose a branch deep Q network (DQN) based
solution following the similar idea as MAB, which is more
effective and leverages the powerful neural network to encode
more features to learn the feature augmentation policy.

(4) The experimental results show that RL-based method
outperforms existing solutions by 12.4% (AUC), 9.8% (AUC)
and 0.113 (MSE) on three datasets in terms of the model
performance.

II. PROBLEM DEFINITION AND SOLUTION OVERVIEW

A. Problem Definition

Machine learning task. Given a set of data {(xi, yi)}Ni=1, a
machine learning task M is to learn a function f : Xd → Y,
where each xi ∈ X is a d-dimension feature vector and yi ∈ Y
is the label of the data instance xi. For example, Y = {0, 1}
indicates that M is a binary classification task, and Y ∈ R
suggests that M is a regression task.

In our problem setup, we assume an initial dataset (stored in
a table) is provided by the user. We are also given a repository
of tables that may contain useful information and can be joined
(either directly or indirectly) with the initial training data. We
want to augment the initial training data with more useful
features from other tables (through join operations) to enhance
the model performance.

The initial dataset can be further divided into training,
validation (Tval) and test dataset (Ttest). The Tval set is used
to develop the model to tune the hyperparameters, and the
Ttest set is to provide an unbiased evaluation of the final ML
model on the training dataset.

Base tables. The tables that store the initial training, valida-
tion, and test data is called the base training, validation, and
test table, respectively. In the rest of this paper, we use base
table to indicate base training table, Tb = {b1, b2, ..., bd, L},
where each bi(i ∈ [1, d]) represents an attribute and L denotes
the label column.

Candidate tables. Candidate tables, T = {T1, T2, ..., Tm}, are
m joinable tables that can be used to augment base table. Each
table is denoted by Tk = {fk1, fk2, ...}, k ∈ [1,m], where fkj
denotes the j-th attribute in table Tk.

At a high level, these tables can be represented as a join
graph, where each node corresponds to a table, and each edge
denotes that two tables can be joined through two attributes
respectively in the tables.

Example 1: As shown in Fig. 1(a), we have the base table
Tb = new_enroll, which contains four features (i.e., d = 4)
and the label column L = enroll_or_not. We also have
four candidate tables T = {Stu_info, Course_info,
Enroll_info, Score}. Tb can join with stu_info,
enroll_info, score via the key student_id, which
is the typically PK-FK join.

Note that in addition to the edges between Tb and tables in
T , there can exist edges in every two candidate tables, which
indicates that our framework supports the transitive join.

Join base table and candidate tables. For flexibility, we
allow the user to specify the join operators between the base
table Tb and candidate tables Ti from T , e.g., which tables can
be joined, along with the operators (e.g., natural join, fuzzy
join, left join, and so on) required for each join operation.

Next we formally define our problem.

The feature augmentation problem. Given Tb, a set of
candidate tables T and a machine learning task M , the feature
augmentation problem is to select a subset of tables T ∗ ⊂ T to
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Fig. 1. An example of Feature Augmentation

join with Tb, and ∀T ∈ T ∗, select a set of features (attributes)
T [F ] to augment Tb (Tval and Ttest are augmented in the same
way), so as to improve the predictive performance of model
under M , if trained on the augmented Tb.

More concretely, the selected T ∗ and the corresponding
features in tables of T ∗ can be viewed as an optimal feature
augmentation plan. This indicates that given a table with the
same schema as Tb, in order to achieve good performance, we
should augment features following the plan, i.e., joining with
tables in T ∗ and augment the features in T [F ], T ∈ T .

Example 2: As shown in Fig.1, given Tb, T and
a machine learning task M , the problem is to se-
lect the optimal subset T ∗ = {Score, Course_info},
as well as the features Score[F ] = {finish_time,
course_score, certificate, forum_part} and
video_num,Course_info[F ] = {course_tag}, which
serves as the feature augmentation plan. In this way, we
can obtain the best model performance improvement if we
augment these features.

As we can see, the search space of the problem is the
exponential w.r.t. the number of tables as well as features.
Even worse, join operation between tables is not efficient, so
it is non-trivial to judiciously explore the search space.

Our goals. We have two goals. (1) Effectiveness. We want to
improve the performance of the predictive model after feature
augmentation. (2) Efficiency. The feature augmentation plan
should be executed within reasonable time (e.g., hours instead
of weeks).

Also, we treat the machine learning model (linear model,
deep neural network, etc.) and corresponding the task M as
a black box such that the user can leverage our framework to
augment features regardless of any particular model, and the
model parameters can be updated iteratively.
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Fig. 2. Overall Framework of AutoFeature

B. Solution Overview

Next, we will present the framework of AutoFeature for
approaching the problem of feature augmentation.
An iterative framework. As shown in Fig. 2, in Step 1⃝,
we first sample some data instances to improve the efficiency.
Then, we conduct an iterative framework on the sampled result
to select the feature augmentation plan (i.e., selecting tables
and features) following an exploration-exploitation strategy.

Initially, we feed the sampled data into the model for
training, and use the validation set Tval to test the performance
(Step 2⃝). Then, based on the feedback, i.e., the change
of model performance, we select a table among candidate
tables to join (Step 3⃝ and 4⃝), so as to choose features for
augmentation (Step 5⃝). Next, the base table together with the
augmented features will be fed into the model, and another
feature augmentation iteration begins.

The above process will terminate when reaching the maxi-
mum iteration times (e.g., 20 iterations).

Overall, the core part of AutoFeature is the Selector,
which adopts the exploration-exploitation strategy to select
tables and features. Basically, based on existing knowledge, if
some features of a table can significantly improve the model
performance, we are likely to keep selecting features in the
table, i.e., exploitation. However, we will also explore more
rarely selected tables (features) to acquire new knowledge, in
case of leading to a local optimum.
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Obviously, using the above iterative process, we can achieve
the goal of effectiveness. However, when using full base table
Tb in the feature augmentation process, it is hard to achieve
the goal of efficiency, since the join and training operations
are both time-consuming. Thus, we use the sampling strategy
to reduce the size of the base table Tb.
The sampling strategy. As we know, the join operation
is always time-consuming, especially in our case that there
exist a number of candidate tables. Hence, we propose to
sample from the base table Tb, producing T ′

b, and use T ′
b to

join candidate tables, which greatly improves the efficiency.
Specifically, we use the stratified sampling method [33] to
get T ′

b that can well represent Tb, such that the the optimal
augmented features for T ′

b are equivalent to those for Tb. Since
the base table is only sampled once, and afterwards, we just
use T ′

b to discover the features, we still use Tb to denote T ′
b

for ease of representation.
In the subsequent sections, we will introduce two ap-

proaches to implement the Selector, i.e., Multi-armed Bandit
based (Section III) and Branch DQN based (Section IV)
solution. The former one is a subtle yet effective method
that follows the exploration-exploitation insight. The latter one
is more powerful because deep neural network is utilized to
consider more features of data, and has strong learning ability.

III. MULTI-ARMED BANDIT FOR AUTOFEATURE

In this section, we first introduce the motivation of using
MAB to solve the feature augmentation problem and then the
detailed implementation.

A. Motivation of MAB

Multi-armed bandit (MAB) [40] aims to model an agent
that simultaneously attempts to acquire new knowledge (i.e.,
exploration) and optimizes their decisions based on existing
knowledge (i.e., exploitation) from the environment. Given
multiple arms, MAB allows the agent to pull an arm in
each iteration, i.e., an action, using an exploration-exploitation
strategy [42]. After the action is executed, the environment
produces feedback, which is utilized to guide the action
selection of subsequent iterations, so as to maximize the long-
term benefits.
Relation between MAB and AutoFeature. At a high
level, our selective feature augmentation problem naturally
fits the MAB framework. Specifically, we have m candidate
tables, corresponding to m arms. In each iteration, pulling an
arm means that a table is selected and some features of it
will be used for augmentation. Afterwards, a reward/penalty
has to be computed based on the performance improvement
or degradation after the features are augmented. Then the
result is utilized to guide the augmentation strategy in next
iterations, where the essential idea is to handle the exploration-
exploitation trade-off between selecting features in the table
that currently leads to high rewards and the tables that are
rarely selected.

B. AutoFeature with MAB

In this subsection, we first introduce what is the action like
in the MAB solution in detail, followed by how to compute the
reward after the action is executed, and how to select the action
based on the reward. The above steps are repeated iteratively,
which is the overall MAB algorithm introduced at the end of
this subsection.
The action: pulling an arm. At the k-th iteration, an action
ak denotes that a candidate table as well as a feature subset are
selected for feature augmentation, i.e., ak = Ti[F ], where Ti ∈
T and F is the selected feature subset of Ti in this iteration.
Ti[∗] denotes that we augment all features of Ti. Apparently,
if Ti is the first time to be selected, in order to evaluate the
features in it, we have to conduct the join operation. Otherwise,
the join results should be previously stored, and thus we can
just select more features from Ti.

We first introduce some notations. We use Tk to denote the
table after the action ak is executed, and Tk will be served
as the training data fed into the model. More concretely, we
represent Tk =▷◁ki=0 ak, where T0 = a0 = Tb[∗].

Example 3: Initially, T0 = New_enroll[*]. Suppose
that a1 = T4[course_score,finish_time], i.e.,
selecting the table T4 = Score to join and augment
features T4[F ] = {course_score,finish_time}. Then
T1 = Tb[∗] ▷◁ T4[course_score,finish_time]
is the training data at the first iteration. Then,
suppose that a2 = T4[certificate,finish_time].
Since T4 has been joined before, we just need to
augment more features in T4 without joining again, so
T2 = Tb[∗] ▷◁ T4[course_score,finish_time] ▷◁
T4[certificate,finish_time] which can be directly
rewritten as T2 = Tb[∗] ▷◁ T4[course_score,
finish_time,certificate,finish_time]
for ease of representation. Next, suppose that
a3 = T2[course_tag,video_num]. T2 = Course_info
can be selected because we support the transitive join, i.e.,
Course_info can join with Score, under the situation
where Score has been joined with Tb. Thus T3 = Tb[∗] ▷◁
T4[course_score,finish_time,certificate,
finish_time] ▷◁ T2[course_tag,video_num].

As discussed above, each action can be divided into two
steps, i.e., select a table and a feature subset of the table.
For the first step, we consider the accumulated rewards of the
candidate tables, which will be discussed next (the UCB-based
solution [3]). Here we mainly discuss the second step, i.e., how
to select the features given a table. To be specific, once a table
T is joined at the iteration k, we have Tk−1 ▷◁ T [F ]. Then we
run XGBoost [13] to compute the significance of features in
T , rank these features and select top-ℓ ones for augmentation.
If at a subsequent iteration, table T is selected again, we select
the next ℓ ranked features to augment without joining. Then
Tk−1 together with the augmented features are fed into the
model for training and testing, and the returned performance
will be utilized to update the reward of table T .

Example 4: Suppose that at the first iteration, we

4



select the table T4. Then we join Tb with T4, producing
the table T1, which is fed into XGBoost [13] for
feature significance computation. The ranked result is
[course_score,finish_time,certificate,
forum_part], and thus in this iteration,
a1 = T4[course_score,finish_time] when
ℓ = 2. Following Example 3, T4 is selected again
at the second iteration, two subsequent features
[certificate,forum_part] are selected based on
the previous ranking.

Note that many ML algorithms can be used for feature
significance ranking. XGBoost is a default choice because it is
a widely-used algorithm in the industry, and it can well handle
the missing values produced by the join operation.
Table reward (penalty) per iteration. Intuitively, we should
give each table a score, once features of the table are aug-
mented and change the model performance. To be specific,
if the performance is improved, the score is regarded as a
reward. If the performance is degraded, the score is regarded
as a penalty.

To this end, we should first measure the performance
difference between the two models if a feature subset of a table
is augmented. More concretely, we denote the performance
at the k-th iteration as M(Tk, Tval), which is trained on
Tk and evaluated on Tval. The performance difference when
Ti[F ] is selected at the k-th iteration can be represented as
rik = M(Tk, Tval) −M(Tk−1, Tval), where Tk = Tk−1 ▷◁
Ti(F ). When rik > 0, the table Ti will be assigned a reward.
Otherwise, it will be assigned a penalty.

Example 5: Following Example 3, consider T1 =
Tb[∗] ▷◁ T4[course_score,finish_time], which
means that a model will be trained on this table (i.e.,
T1), and M(T1, Tval) = 0.72 denotes the perfor-
mance of model testing on the validation dataset, i.e.,
Tval ▷◁ T4[course_score,finish_time]. Suppose
M(T0, Tval) = 0.71, and then r41 = M(T1, Tval) −
M(T0, Tval) = 0.01, which is a reward.

Algorithm 1: A UCB-based MAB Algorithm
Input: Tb, Tval, candidate tables T , M , # iterations k
Output: A feature augmentation plan Tk.

1 T0 = Tb

2 for each Ti ∈ T do
3 Initialize Ri

0 = 0, ni
0 = 0, U i

0 = 0;

4 for k from 1 to k do
5 Select the table with the largest U i

k(i.e., Ti);
6 if Ti has not been selected then
7 Join Ti with Tk−1 ;
8 Rank features in Ti ;

9 Tk = Augment top-ℓ unselected features F k
i in Ti;

10 rik = M(Tk, Tval)−M(Tk−1, Tval) ;
11 Update Ri

k and U i
k ;

12 if rik < 0 then
13 Discard F k

i from Tk;

14 return Tk;

Accumulated scores of tables. As discussed above, in each
iteration, one of the candidate tables will be assigned with a
reward/penalty. However, feature selection is an iterative pro-
cess, thus a table is likely to have multiple score assignments.
Therefore, an accumulated score has to be computed for each
table. To be specific, we use Ri

k = 1
ni
k

∑k
j=1 r

i
j to denote the

accumulated score from the 1st to k-th iteration, where rij is
the score of table Ti at the i-th iteration, and nik is the number
of times that Ti is selected from iteration 1 to k.

Example 6: Suppose at the first iteration, we select T4 =
Score, a1 = T4[course_score,finish_time] and
r41 = 0.01. Then, a2 = T4[certificate,finish_time]
and r42 = 0.02 tested on Tval, followed by a3 =
T2[course_tag,video_num] and r23 = 0.01. We have
R4

3 = 1
2 (r

4
1 + r42) = 0.15 and R2

3 = r23 = 0.01.

Upper Confidence Bound (UCB) based solution. As dis-
cussed above, a table with a high accumulated score indicates
that features in the table always improve the model perfor-
mance. Thus a straightforward approach is to keep exploiting
the table with the highest Ri

k at any iteration. However, this
method will easily lead to the local optimum because it does
not have the chance to explore the tables that are rarely visited
but potentially helpful.

To address the above issue, we can leverage the popular
UCB-based solution [3] to balance the exploitation-exploration
trade-off. Considering the two factors, UCB computes another
score for each table at the k-th iteration, as follows.

U i
k = Ri

k + γ

√
2k

ni
k + 1

(1)

where γ is a pre-defined parameter that controls the balance
between exploitation and exploration. Intuitively, a table with a
high accumulated score, i.e., Ri

k, will have a high UCB score,
leading to a higher probability to be selected, but meanwhile,
a rarely selected table with a small nik will also be likely
to be chosen. At each iteration, we select the table with the
maximum UCB score.
Algorithm. Algorithm 1 illustrates the overall process of the
UCB-based solution. It first initializes the parameters (line 3).
Then the algorithm iterates k times, which is specified by the
user (line 4-11). In each iteration, it selects a table with the
largest UCB score (line 5). If the table has not been joined,
we join it with the existing table, i.e., Tk−1, and then rank
features (by default using XGBoost) in Ti (line 7-8). Next,
we augment top-ℓ unselected features to Tk−1, producing Tk.
Then we test the performance difference after augmentation,
and use the result to update the accumulated score and UCB
score for further augmentation in subsequent iterations (line
10-11). After evaluating the performance on Tval, if the rik is
a penalty (i.e., rik < 0), we discard the selected feature set Tk

from Tk, thus Tk = Tk−1(line 12-13).
Example 7: We show a running example of Algorithm 1 in

Fig. 3. We suppose that k = 4, l = 2 and γ = 0.02.
(1) We first initialize U i

0 = 0, Ri
0 = 0, i ∈ [1, 4].
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Fig. 3. A running example of AutoFeature

(2) In Iteration-①, since U i
0 = 0, i ∈ [1, 4], we randomly

select a table from T . Suppose that T4 is selected, it can
directly join with Tb on key student_id and we rank the
features. We augment the first two features from T4 to get
the new training data T1, which is used to retrain M . After
testing on Tval, we get r41 = 0.01. Then, R4

1 = 0.01 and U4
1 =

0.01 + 0.02(
√

(2 ∗ 1)/2) = 0.03. Thus, R1
1 = R2

1 = R3
1 = 0

and U1
1 = U2

1 = U3
1 = 0.028. Since r41 > 0 (i.e., r41 is reward),

we keep these two new features in T1.
(3) In Iteration-②, since U4

1 is the largest, we select T4
again. As we ranked the features in the first iteration, we can
directly select the first two available features and get T2. Next,
we can obtain r42 = 0.02 and R4

2 = 1
2 (0.01 + 0.02) = 0.015.

Using R4
2, we compute U4

2 = 0.015 + 0.02(
√
(2 ∗ 2)/3) =

0.038. Meanwhile, U1
2 = U2

2 = U3
2 = 0.04. We also keep the

new features since r42 is positive.
(4) In Iteration-③, since U1

2 = U2
2 = U3

2 = 0.04 > U4
2 =

0.038, we randomly select a new table from {T1, T2, T3},
and suppose it is T2. After ranking the features in T2, we
select the top-2 features, i.e., f2,2 and f2,5, to augment and
obtain T3. We find r23 = 0.01 and R2

3 = 0.01. Then, we can
compute U2

3 = 0.01 + 0.02(
√

(2 ∗ 3)/2) = 0.045 and U4
3 =

0.015 + 0.02(
√
(2 ∗ 3)/3) = 0.043. Also, U1

3 = U3
3 = 0.049.

(5) In Iteration-④, since U1
3 = U3

3 > U2
3 > U4

3 , we
randomly pick a table from {T1, T3}. Suppose the candidate
table T1 is selected. Next, we can augment the first two as
introduced. However, we find r14 = −0.01 after testing on
Tval. Since r14 is negative (i.e., r14 is a penalty), we drop these
two features. Then, we obtain the feature augmentation plan
T4 = Tb[∗] ▷◁ T4[f4,4, f4,3, f4,5, f4,6] ▷◁ T2[f2,5, f2,2].

IV. BRANCH DQN FOR AUTOFEATURE

The aforementioned MAB-based method leverages the UCB
function with fixed parameters to augment the features, which
cannot incorporate more data characteristics and has poor flex-
ibility. Therefore, in this section, we propose a branch-DQN

based RL to build a more powerful and flexible framework for
feature augmentation.

A. Motivation of Using Branch DQN

RL and selective feature augmentation. RL is a typical ML
paradigm where an agent conducts trial-and-error interactions
with the environment, and in each interaction, the feedback
of the environment is learned to find the optimal solution.
For instance, in the famous AlphaGo [37] project, considering
the current state (i.e., the board situation), the agent predicts
the next optimal action (i.e., where is the next piece on the
board) which can lead to the largest probability to win, i.e.,
the highest reward.

As discussed above, it is necessary for the selective feature
augmentation to (1) require feedback (i.e., performance) from
the model training and testing, and (2) update the feature
augmentation policy based on the feedback. Therefore, RL
naturally has a close relation with the problem, where the
training data Tk at each iteration can be regarded as the
state. Similar to the MAB solution, the action is to select
table as well as features to augment given each state. Then
the environment retrains the model, computes the reward and
updates the augmentation criteria.
Deep reinforcement learning (DRL). Although the MAB-
based solution can also leverage the feedback, it has several
limitations. First, the augmentation criteria is implemented
with a fixed function with poor flexibility. Second, some
significant feature characteristics for feature selection, such
as the mutual information between features and label column
L [6], are not considered. To address these issues, we propose
to use DRL that encodes the state in a unified representation
(including the data characteristic), supports the “deletion”
action for features tracing back and utilizes more powerful
neural network to build sophisticated augmentation criteria.
Branch DQN. Recall that in selective feature augmentation,
the action potentially consists of two types, i.e., table selection
and feature selection. However, in MAB based method, only
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the table is selected by Equation (1), and the feature selection
is conducted separately. Apparently, we hope that they are
solved in a consolidated solution such that the correlation
between tables and features can be well captured, leading to
a more robust model. Intuitively, if a table can significantly
improve the performance of the downstream model, it will
likely contain useful features. Therefore, table selection can
achieve feature filtering and deletion of batch features. Then,
the action of selecting a feature is a more fine-grained way to
generate the augmentation plan. Therefore, we propose to use
the branch DQN [38], [41] that simultaneously embeds both
the table and feature selection into the powerful deep neural
network for more holistic and accurate augmentation. Next,
we illustrate the details of the branch DQN.

B. Feature Augmentation Using Branch DQN

In this section, we first introduce the key factors in the
branch DQN, and then the overall training process.
State. Each state sk represents the situation of the table Tk

in each iteration. Recall that Tk consists of the joined tables
and the augmented features, which should be considered in the
state representation. Moreover, we also compute some feature
characteristics from Tk as features for neural network training.

In short, the representation of sk considers 3 aspects.
(1) The joined tables. Given T with m tables, we use an m-

dimension vector Ψk to denote which tables have been joined.
To be specific, each element ψi

k of Ψk is either 0 or 1, where
ψi
k = 1 denotes that Ti is joined, and 0 otherwise.
(2) The augmented features. Suppose that each table Ti has

di attributes (features), and thus Φi
k is a di-dimension vector

that indicates which features in Ti have been selected. Each
dimension of Φi

k corresponds to a feature, either 1 (the feature
is augmented) or 0 (not augmented). Then, we concatenate
the m vectors as Fk, with a dimension DF =

∑m
i=1 di, to

represent the augmented features.
(3) Feature characteristics. For each attribute (feature) fij , it

is necessary to provide some criteria indicating the importance
of each attribute. We consider three different criteria–Variance,
Pearson correlation coefficient and Mutual information–to
evaluate each attribute.
(a) Variance (VAR). Variance var(fij) [35] can reflect the
volatility of feature values. If the variance is small, such a
feature has little effect on the model. The greater the variance,
the better the feature distinguishes itself in the model. For
feature fij from Ti, we can compute the variance var(fij) as

var(fij) =
1

|Ti|

N∑
j=1

(xj − µ)2, (2)

where xj is the value of feature fij on data instance x from
the table Ti and µ = 1

|Ti|
∑N

j=1 xj .
(b) Pearson correlation coefficient (PCC). Pearson correlation
coefficient P(fij , L) [5] is a normalized measurement of
the covariance, measuring the strength of linearity between
the attribute fij and label column L. Pearson correlation

coefficient is between -1 and 1. The larger the absolute value,
the stronger the correlation. P(fij , L) can be computed as

P(fij , L) =
cov(fij , L)√
var(fij)var(L)

, (3)

where cov(fij , L) is the covariance of fij and L, and var()
is the variance mentioned above.
(c) Mutual information (MI). Mutual information
M(fij , L) [19] between fij and L quantifies the amount
of information obtained about L, through taking fij into
consideration. Mutual information can evaluate both linear
and non-linear relationships between fij and L. The greater
the mutual information, the more important the feature. We
can compute M(fij , L) as

M(fij , L) =

∫
fij

∫
L

P (fij , L)log
P (fij , L)

P (fij), P (L)
, (4)

where P (fij , L) is the joint probability distribution of fij and
L; P (fij) and P (L) are the marginal probability distribution.

Overall, we use the vector ΩF to denote the data char-
acteristics of the current tables. Specifically, if table Ti has
been selected (i.e., Ti has been joined with Tb), for each
feature in Ti, the data characteristics of the feature constitute
the triple (VAR, PCC, MI), otherwise the triple is (0, 0, 0).
The reason is that for those tables, which are not joined with
Tb, we cannot obtain the data distribution of the join results
before executing the join operation. Thus, we cannot compute
the feature characteristics. Therefore, ΩF is a 3DF -dimension
vector that concatenates the data characteristics of all features.

Finally, we represent sk as concatenating the vectors w.r.t.
the above three factors, i.e., sk = (Ψk,Φk,ΩF ) .

Example 8: For each iteration, we first construct the state
representation vector sk. As shown in Fig. 4-(a), we can see
that T3 is selected, the corresponding position of Ψk is set
to 1. We can also see that the feature f3,3 is selected, so
the corresponding position in Φk is 1 now. Additionally, we
compute the characteristic of the features in T3. Then, after
concatenating Ψk, Φk and ΩF , we can obtain the represen-
tation sk of current state, which is then fed into the branch
DQN model (Fig. 4-(d)).
Remark. Since the base table Tb is in Ti, we also take the
base table Tb into consideration when representing the state.
Note that the label column L is in the base table, we exclude
L in sk because it cannot provide any more information for
the learning process. Thus, we have the state representation
vector sk = (Ψk,Φk,ΩF ), where Ψk, Φk and ΩF are m+1,
DF + db and 3(DF + db) dimension vector, respectively.
Action. At a high level, there are two types of actions, i.e.,
joinable table selection and augmentation feature selection,
which belong to different action spaces. For each type, we
also have two choices, i.e., add or delete a table (feature). To
be specific, the action space w.r.t. joinable table selection is
represented by AT = {a1T , a2T , ..., amT , a

m+1
T , ..., a2mT }, where

ak = aiT (or am+i
T ) denotes that at the k-th iteration, we

join (or remove) the table Ti from Tk. Similarly, AF =
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Fig. 4. Branch DQN based RL framework and a running example

{a1F , a2F , ..., a
MF

F , ..., a2MF

F } denotes the action space w.r.t.
feature augmentation.
Remark. Note that at each state, we will mask some invalid
actions. More concretely, if a table has not been joined,
features in the table should be masked. If there is a transitive
join pattern like T1 ▷◁ T2 ▷◁ T3, T3 should be masked if T2 is
not joined with T1.

Example 9: As shown in Fig. 4 with dot line, the agent
selects a new action ak according to the state vector. We can
see that ak = a1T , i.e., a new table T1 is selected (Fig. 4-(b)).
Then, we join T1 with Tk and obtain Tk+1 = Tk ▷◁ T1. After
constructing the new state vector sk+1 and feeding it into the
network (Fig. 4-(d)), we get a new action ak+1 = a2F , which
means that the feature f1,2 from T1 is selected and added to
train the downstream model.
Reward. The reward rk indicates the performance change
of the downstream model before and after the action ak is
executed, i.e., the model difference of the downstream model
between the (k − 1)-th iteration and the k-th iteration. rk can
be calculated by M(Tk, Tval)−M(Tk−1, Tval).
Remark. Note that if ak = Ti from AT , we just use the
joined table Tk−1 ▷◁ Ti to calculate the model performance
improvement as the reward of ak. We do not augment any
features from Ti. In other words, after executing ak ∈ AT ,
Tk equals to Tk−1.
Environment. The environment encodes the joinable tables,
augmentation features and corresponding data characteristics
as the state to support the decision making. Given an action,
it either adds a table (feature) or deletes a table (feature), and
retrains the downstream model. In addition, the environment
executes the action, calculates the reward and sends the
transition to the agent.
Agent. The agent takes current selected tables and features
into account and uses the RL model to choose a new action
according to the estimated long-term reward. In addition,
the agent receives the transition from the environment of
each iteration and conducts the learning process by using the
experiences from the memory pool.
Model Design. Now, considering the typical DQN frame-
work [39], the agent interacts with the environment iteratively.

The agent perceives the state s at each iteration. Then, it
chooses an action from A for the corresponding state and
observes a reward signal r from the environment. The agent
seeks to maximize the long-term reward Rt =

∑∞
k=t rk,

through learning an augmentation policy π. Actually, the
learning the policy π is to learn a state-action value function
(Q function for short), which is defined as Qπ(s, a) =
E[r+γmax′aQ

π(s′, a′)] and can be computed recursively with
dynamic programming.

However, in our feature augmentation scenario, our actions
are from two different action spaces, i.e., joinable table selec-
tion AT and augmentation feature selection AF .

Apparently, it is difficult for the DQN framework to learn a
policy π coping with the action from different action spaces.
Since AT and AF are from different action spaces, it is better
to optimize for each action space relatively independently.
However, there still exists connection between AT and AF ,
and thereby we also need to take them into consideration
together when making decisions. Thus, we use the branch
DQN [38] to design the architecture of our neural network. The
key idea is that the network distributes the representation of the
Q function across multiple network branches while keeping a
shared decision layer to make a final decision (either an action
in AT or AF in this paper).

As shown in Fig. 4, once the state vector is fed into the
branch network (Fig. 4-(d)), a common representation layer is
used to learn the general information across the two types of
actions (i.e., AT and AF ). Then, we distribute the representa-
tion of two different actions on two action branches, i.e., table
dimension layer and feature dimension layer. The two branches
(i.e., Table Q-Value layer and Feature Q-Value layer) estimate
the Q-value of each action relatively independently and send
them to the aggregation layer (i.e., Action layer). Finally, the
two types of actions are combined to produce estimates of
the distributed action values and the action with the largest
Q-value is chosen. In the back propagation stage, the two
branches update their strategies relatively independently (The
green layer in Fig. 4). The representation layer can use the
information from the two branches to update the common
strategy. Then, the two branches can use each other’s informa-
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TABLE 1
STATISTICS OF DATASETS.

Datasets Task types # Cand. tables # Cand. features
School Classification 16 695

XuetangE Classification 23 204
Air Regression 34 338

tion to make decisions based on the common representation
layer.
Model Training. Similar to traditional DQN, branch DQN is
also trained as the Q-value estimator, i.e., finding the optimal
parameters θ to estimate the Q-value(Q(s, a; θ) ≈ Q∗(s, a)).
In our AutoFeature, we use the prioritized memory re-
play [34] to enable online and off-policy learning via reusing
past experiences. The transitions together with their priorities
are stored in a prioritized memory pool in order to replay
important experience transitions more frequently, which have
a high expected learning progress.
Model Inference. After the model is trained, it can be used
to infer the feature augmentation plan. Concretely, the model
repeatedly chooses the action based on the state of Tk. During
the inference process, we do not update the model.

V. EXPERIMENT

A. Experimental Setup

Datasets. We use three real-world datasets (School,
XuetangE and Air) to conduct our experimental study. We
have two datasets (School and XuetangE) for classification
tasks and one dataset (Air) for the regression task. As shown
in Table 1, we can obtain the basic information about the
three datasets. The number of candidate joinable tables and
the number of the candidate features are shown in the column
“# Cand. tables” and “# Cand. features.” For each dataset, we
use 60% of the data as the training set, 20% as the validation
set and 20% as the test set. For efficiency, we sample each
dataset. The sampling ratios are 30% for School, 10% for
XuetangE and 15% for Air.

Next, we provide detailed information about these datasets.
(1) School is a binary classification dataset that contains
16 candidate joinable tables, which are collected from NYU
Auctus [1]. The task of School is to predict the performance
of each school based on student attributes, course attributes
and some historical surveys.
(2) XuetangE is another classification dataset in an online
education scenario, predicating “whether a student enrolls
a certain course or not.” XuetangE contains 23 candidate
tables including student information, course selection informa-
tion and other tables. All of them are collected in real scenario.
(3) Air is a regression dataset aiming to predict the air quality
of a city on a given date. Air contains 34 candidate tables of
different air metrics from NYU Auctus [1] and google [2].
Evaluation Metrics. Since we have two different types of
tasks, i.e., classification and regression, we use Area Under
Curve(AUC) and Mean Squared Error(MSE) for these two
tasks, respectively.
(1) AUC [16] is a commonly used metric for classification
tasks to assess the discriminative power of the predictive

classification model. AUC is the area under the ROC curve.
Thus, the value of AUC is between [0,1]. ROC curve is the
plot of the rate of true positives (TPR, computed by TPR =
TP/(TP+FN)) versus the rate of false positives (FPR, computed
by FPR = FP/(TN+FP)) at different probability cutoffs. The
higher the AUC score, the better the model.
(2) MSE [28] is often used to evaluate the performance of the
regression model. MSE takes the distances from the normalized
points of ground truth(y) to the regression line (ypredict) and
squaring them, i.e., MSE = 1

n

∑n
i=1(y− ypredict)

2. The lower
the MSE, the better the prediction.
Baselines. We compared AutoFeature with a variety
of typical solutions, including basic solutions like Non
and All, filter-based solutions, wrapper-based solutions like
Backward and Forward, as well as ARDA. All these meth-
ods are iterative augmentation, except Non and All.
(1) Non is the original baseline that no new feature is added
to train the model.
(2) All is a simple method that all the candidate tables from
T are joined with the base table and all features are added to
train the downstream model.
(3) Random is a straightforward baseline that treats the fea-
tures from different tables as independent individuals. Given
the number of required features (i.e., α), it randomly selects
α features to form the feature subset.
(4) Filter-based methods are simple but straightforward base-
lines. Filter-based methods first join all candidate tables from
T with the base table Tb. Then, they evaluate the correlation
between the features and the target variable. We use Chi-
square, Gini index, mutual information and XGBoost score for
classification tasks and use mutual information and XGBoost
score for regression tasks, because Chi-square and Gini index
are only suitable for classification. Afterwards, these methods
select the most top-k important features based on the metrics.
(5) Backward is a wrapper-based feature augmentation
method [21], which first joins all candidate tables together. Af-
terwards, in each iteration, it evaluates which feature degrades
the performance most and removes it. Since Backward joins
all features together first, and then eliminates one-by-one, we
just report the final result of this method in Fig. 5.
(6) Forward is another wrapper-based feature augmentation
method [21]. Initially, Forward only has the features from
the base table. Then, in each iteration, Forward keeps
adding the feature which best improves the performance of
the downstream model.
(7) ARDA is a feature augmentation system, which heuristically
selects top-k tables to join and uses a random injection-based
feature augmentation to search candidate feature subsets.
Solutions. We compare our MAB-based and Branch-DQN-
based solutions with the baselines.

B. The Effectiveness of AutoFeature

For different datasets, we are going to answer the question
that Does AutoFeature solve the feature augmentation
problem better than other baselines? We apply all the methods
mentioned in section V-A to the three different datasets.
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Fig. 5. The performance of different methods

As shown in Fig. 5, we show the effectiveness of different
methods on the three datasets. The three figures correspond
to the results on the three datasets (i.e., School, XuetangE
and Air), where the x-axis represents the number of iterations
while applying different methods, and the y-axis represents
the performance of the downstream model. For School and
XuetangE, we use AUC to evaluate the performance of the
model. For Air, we use MSE to evaluate the performance.
Remark. k represents the number of iterations for different
methods. For Branch-DQN, k refers to the number of itera-
tions of action selection in the inference stage rather than the
number of training iterations. That is, at each k−th iteration,
we aim to either join a table or augment a feature.
Result on School. The effectiveness of different methods on
School is shown in Fig. 5 (a). On this dataset, we can see that
all methods can improve the performance of the downstream
model. We can find that as more features are added, the AUC
increases and gradually converges after about 30 iterations.
The reason is that as the useful features are selected, the
remaining features can bring little information and some of
them may be noise.

For All and Random, they can both improve the per-
formance of the model (i.e., 71.1% for All and 72.2% for
Random after 40 iterations), but they do not outperform
Backward, Forward, ARDA and AutoFeature. For All,
the reason is that although some new features can help, adding
all features without filtering and selection is likely to introduce
some irrelevant features, which are likely to be the noise for
the model. This tells us that not all features in joinable tables
are useful, so it is necessary to select relevant features. For
Random, compared with All, there is no much improvement,
and the effect is not stable enough, i.e., sometimes adding
more features might decrease the performance because it does
not consider the quality of the features.

The two wrapper-based Backward and Forward perform
better than Random, and they achieve the AUC of 73.2%
and 72.6% (after 40 iterations), respectively. This is because
both of them use the feedback from the downstream model.
Furthermore, they both use the prediction result to rank the
features, then select new features that best improve the model
performance (Forward), or exclude the features that hurt the
model performance most (Backward). However, Backward
and Forward do not significantly improve the performance

of the model. The main reason is that they are unable to well
explore the search space of features. In addition, their greedy
augmentation strategies can easily lead to local optimal, and
thus fail to discovery more useful feature combinations.

For filter-based methods, we can see that they are worse
than wrapper-based methods (i.e., Backward and Forward).
Backward (73.2%) and Forward (72.6%) outperform
Chi-square (70.9%), Gini index (70.5%), Mutual
information (71.5%) and XGBoost score (71.9%).
The reason is that filter-based methods ignore the relationship
between different features and do not consider the feedback
from the downstream model.

Among the baselines, ARDA performs better (74.8%) than
Random, Backward and Forward. The reason is that the
random injection based feature selection method of ARDA can
select useful features. However, it still has some limitations.
First, ARDA selects candidate tables based on the relevance
to the base table, lacking consideration of the impact on
the model. Second, ARDA separates the steps candidate table
selection and feature augmentation, making it difficult to
dynamically update the strategy.

Our solution MAB and Branch-DQN of AutoFeature
significantly outperforms all baselines, obtaining the AUC of
77.3% and 79.6%, respectively. The reasons are two-fold.
On the one hand, we use the trial-and-error approach to
discover the useful feature combinations, which can capture
the relationship between tables and features. On the other
hand, we directly use the feedback from the model to guide
the augmentation process and use the exploration-exploitation
strategy to discover potentially usefully features. We can see
that Branch-DQN performs better than MAB. That is because
(1) Branch-DQN takes more characteristics of the features in
the augmentation process, (2) Branch-DQN can update the
augmentation policy based on the feedback from the model.
Result on XuetangE. The effectiveness on XuetangE is
shown in Fig. 5 (b). We can see that MAB and Branch-DQN
achieve the AUC of 78.3% and 81.4%, respectively, which
outperform All (69.6%), Random (75.2%), Backward
(75.7%), Forward (75.1%) and ARDA (76.8%). We can see
that All does not improve the performance of the downstream
model since the proportion of noise features is greater than
that of School, and thus too many noisy features are intro-
duced. In addition, the performance of Forward is similar
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Fig. 6. Sensitivity analysis of MAB

to Random. The reason is that Forward can hardly discover
feature combinations, but in XuetangE, feature combinations
are more useful than evaluating a single feature each time.
Result on Air. The effectiveness on Air is shown in
Fig. 5 (c). Different from School and XuetangE, Air
is a regression dataset. Thus, we use MSE to evaluate the
performance of the downstream model. The lower the MSE,
the better the model performance. We can see that all meth-
ods can improve the performance of the model, where MAB
(0.247) and Branch-DQN (0.228) significantly outperform
other methods, e.g., Backward (0.285), Forward (0.293)
and ARDA (0.269). We can see that at 40 iterations, for ARDA,
the performance of the downstream model decreases. The
reason is that ARDA just selects candidate tables that are
semantically relevant to the base table, but these features may
not directly improve the model performance.
Efficiency of different methods. In terms of inference ef-
ficiency of different methods, MAB is rather efficient. For
example, on XuetangE, it takes 473.2s for MAB to iter-
ate 30 times, while other methods take 14.58s (Random),
7476s (Backward), 1754 (Forward), 832s (ARDA) and 359s
(Branch-DQN). Since Random only randomly augments
features and only trains once, it is very fast. However, the
effect of Random is not as good as other methods, and it is not
stable enough. Although Branch-DQN needs several hours to
train the RL model, it is acceptable since the most performance
improvement of the downstream model is the main goal of our
solution.

C. Sensitivity Analysis of MAB

For MAB, recall that there are two parameters in the solution,
namely, γ and ℓ. We are going to answer the question that
how γ and ℓ affect the performance of MAB? Therefore, we
try different γ and ℓ on three datasets.

As shown in Fig. 6, we show the effect of different γ and
ℓ on the model performance on the three datasets, where the
x-axis represents different values of ℓ and y-axis represents
the performance improvement of the downstream model. The
effect of different γ is represented by different colored bars.
Varying ℓ. As shown in Fig. 6, we can see that the different
values of ℓ will affect the performance. When ℓ = 3, the
performance of the downstream model can be improved most.
ℓ = 3 is better than ℓ = 1. For example, on School, the
improvement of AUC (∆(AUC)) is nearly three times higher.
The main reason is that when ℓ is too small, it is hard for MAB

to capture the relationship between features, i.e., MAB cannot
discovery enough useful feature combinations. Similarly, ℓ = 3
is better than ℓ = 6. That is because when ℓ is set too large,
the size of the feature subset in each iteration increases. Thus,
noisy features can be easily introduced, which may hurt the
performance of the downstream model.
Varying γ. As shown in Fig. 6, we can see that the difference
of γ also affects the effect of MAB. We can see that γ = 6
is the reasonable choice. For example, on XuetangE, when
γ = 0.6, MAB performs better than γ = 0.2/0.4/0.8. The
reason is that when γ is close to 0, based on Equation (1),
MAB actually tends to use “exploitation” strategy to augment
features, i.e., MAB will augment features from the explored
candidate tables more. Thus, MAB is more likely to lose
potentially useful features from the unexplored tables. Instead,
when γ is close to 1, MAB tends to use the “exploration”
strategy during the feature augmentation process, i.e., MAB
will pay more attention to those tables that are rarely explored,
aiming to discover more potentially useful features. However,
too much exploration may easily introduce noise features.

D. DQN and Branch-DQN

For Branch-DQN, since the architecture is different from
traditional DQN, we carefully compare DQN and Branch-DQN
in terms of performance and efficiency. The results are shown
in Fig. 7 and Fig. 8, respectively.
Apply DQN to feature augmentation. Recall that in Sec-
tion IV, we use Branch-DQN to solve the feature augmenta-
tion problem. Thus, we can also use DQN to solve this problem.
Compared with Branch-DQN, there are two differences when
using DQN. First, we only consider the actions in AF , i.e., the
action is either “augment” or “drop” a feature. Second, for
the neural network, we use the typical fully connected neural
network architecture instead of the branch architecture.

As shown in Fig. 7, we show the effect of DQN and
Branch-DQN on different datasets, where x-axis represents
the iteration times while inference, and y-axis represents the
improvement of the downstream model (∆(AUC) for School
and XuetangE, ∆(MSE) for Air) after feature augmentation
by DQN and Branch-DQN. As shown in Fig. 8, we show the
training time of DQN and Branch-DQN on the three different
datasets, where x-axis represents the different dataset and y-
axis represents the training time in minutes.
Difference in performance. From Fig. 7, we can see
that Branch-DQN obviously outperforms DQN on the three
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datasets, i.e., Branch-DQN can achieve larger performance
improvement of the downstream model. For example, for
XuetangE, after 30 iterations, the performance improvement
of using Branch-DQN is nearly two times than that of using
DQN. In addition, in Fig. 7 (b) and (c), the performance
improvement for DQN decreases after 25 (for XuetangE)
and 20 (for Air) iterations. The reason is that Branch-DQN
can capture the relationship between candidate tables and the
relationship between tables and features.
Difference in efficiency. From Fig. 8, we can see that DQN
takes much more time than Branch-DQN to train the RL
model. For example, on Air, compared with Branch-DQN,
DQN takes three times more time to train the RL model, which
is unacceptable in practice. In addition, we can see that the
training time spent by DQN varies greatly on different datasets,
however, the training time of Branch-DQN has not changed
that much on different datasets. The reason is that DQN needs
more exploration to capture the relationship of the features,
which are from different candidate tables.

VI. RELATED WORK

Feature augmentation for relational data. There exists some
work on feature augmentation. (1) Kumar et al. [27] and Shah
et al. [36] mainly solve the problem that when performing key-
foreign key join, where join operations can be avoided without
sacrificing the performance of the model. This is different from
the problem we are trying to solve. On the one hand, their goal
is to avoid unnecessary joins and to keep the performance of
the model. However, our goal is to augment useful features
and to improve the performance of the model. On the other
hand, [27] and [36] are limited to PK-FK join, but we do
not limit the join type. We allow the users to specify the join
operators. (2) Chepurko et al. [14] proposed ARDA, a feature
augmentation framework that can handle different types of
join. ARDA leverages existing data discovery tools (e.g., [17])
to score the candidate tables and uses a heuristic algorithm
to select features. Hence, the performance of ARDA heavily
relies on the scores given by Aurum. Unfortunately, the scores
are not always accurate since they are not model-aware.
Feature selection. Given a dataset, feature selection selects
an optimal subset of features, aiming to maximize the per-
formance of the model. The feature selection methods can
be categorized into filtering methods, wrapper methods and
embedded methods [12], [21]. (1) Filtering methods [7], [24],
[26] rank features by some evaluation metrics (e.g., mutual

information) and select the top-ranked features. Although fil-
tering methods are efficient, they do not take the dependencies
of features and the variation of the downstream model into
consideration. (2) Wrapper methods [20], [25], [26], [32]
mainly consist of feature subset generation and feature subset
evaluation. Wrapper methods iteratively repeat the two steps
until the model performance meets the requirements. Wrapper
methods use the downstream model for subset evaluation.
Thus, the feature subset provided by wrapper methods can
improve the model performance well. However, training a
new model for each subset makes wrapper methods com-
putationally expensive. (3) Embedded methods [4], [4], [7],
[22] integrate the feature selection into the model training,
using their built-in feature selection mechanism to select
feature subsets. Embedded methods are less computationally
expensive than wrapper methods and can provide better feature
subsets than filtering methods.
Database management techniques for ML. In addition to
features, acquiring more data instances can also benefit the
ML model, but the data may be insufficient, dirty or unlabled.
Hence, data preparation [11] can be leveraged to improve the
ML model performance, including data discovery [10], [31],
data cleansing [8], [23], data labeling [9], [15], [29], [30], [43].

VII. CONCLUSION

In this paper, we study the problem of automatic feature
augmentation for supervised learning. To be specific, we
conduct the design space exploration (e.g., forward selection,
backward selection, RL-based method, etc.) of this problem.
In particular, we design two algorithms leveraging the idea
of handling the exploration-exploitation trade-off. One is the
MAB-based solution that regards each table as an arm and
conducts feature selection after the arm (table) is pulled
(joined). The other one uses the branch DQN to leverage the
neural network to judiciously choose tables or features.
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