
Automatic Data Acquisition for Deep Learning
Jiabin Liu

1
, Fu Zhu

1
, Chengliang Chai

1
, Yuyu Luo

1
, Nan Tang

2

1
Tsinghua University, China;

2
QCRI, Qatar

{liujb19@mails.,zhuf18@mails.,chaicl15@mails.,luoyy18@mails.}tsinghua.edu.cn,ntang@hbku.edu.qa

ABSTRACT

Deep learning (DL) has widespread applications and has revolu-

tionized many industries. Although automated machine learning

(AutoML) can help us away from coding for DL models, the acquisi-

tion of lots of high-quality data for model training remains a main

bottleneck for many DL projects, simply because it requires high

human cost. Despite many works on weak supervision (i.e., adding
weak labels to seen data) and data augmentation (i.e., generating
more data based on seen data), automatically acquiring training

data, via smartly searching a pool of training data collected from

open ML benchmarks and data markets, is not explored.

In this demonstration, we demonstrate a new system, automatic

data acquisition (AutoData), which automatically searches train-

ing data from a heterogeneous data repository and interacts with

AutoML. It faces two main challenges. (1) How to search high-

quality data from a large repository for a given DL task? (2) How

does AutoData interact with AutoML to guide the search? To

address these challenges, we propose a reinforcement learning

(RL)-based framework in AutoData to guide the iterative search

process. AutoData encodes current training data and feedbacks of

AutoML, learns a policy to search fresh data, and trains in iterations.

We demonstrate with two real-life scenarios, image classification

and relational data prediction, showing that AutoData can select

high-quality data to improve the model.
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1 INTRODUCTION

Deep learning (DL) is gaining much popularity due to its pow-

erful and mysterious in terms of accuracy and generalization abil-

ity, which has widespread applications, e.g., image recognition [7],

natural language processing [13, 16], advertisement recommen-

dation [8], etc. To democratize DL, automated machine learning

(AutoML) is proposed as a promising solution to build a DL system

without human assistance and has made great strides. Nevertheless,

even with the help of AutoML, lots of labeled training data is still

a must. One obstacle is that getting access to enough high-quality

training data is usually both time-consuming and labor-intensive.

Therefore, a challenging problem is how to acquire training data

automatically, so as to improve a downstream DL task.
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Figure 1: Overview of AutoData

Opportunity. In the age of big data, there is plenty of high-quality

labeled data available in external data repositories. For example,

there are 3000+ datasets on www.paperswithcode.com alone, where

a big dataset can have 14M+ labeled data points. Moreover, it is

also possible to acquire data from data markets.

Challenges. Automatic data acquisition faces two main challenges.

(1) How to search valuable data for the downstream task? Since the

data in the wild is heterogeneous, not all of them help [1, 10], and

some may even degrade the model performance w.r.t. a given task.

On the other hand, good training data may come from multiple

sources [2, 4, 5, 12], so intuitively, the fundamental question is:

how to search data points that are useful to a DL task from a large

number of heterogeneous data? (2) How to interact with AutoML

when searching data? The data search process cannot work without

interacting with AutoML. Although there are many metrics to

measure the overall performance of the dataset on the model, what

information do we need from AutoML to guide the search?

Our Proposal: RL-based AutoData " AutoML. To address

these challenges, we propose a reinforcement learning (RL)-based

automatic data search system AutoData, which fetches fresh train-

ing data from heterogeneous repositories and interacts with Au-

toML, as shown in Figure 1.

RL is an important ML paradigm that an “agent” learns from the

feedback through trial-and-error interactions with the “environ-

ment”. Specifically, given a training dataset fed into AutoML, the

environment in our RL framework has a Valuator to compute an

influence score for each training data point, which measures how

the model changes if the point is modified a little. The higher the

score is, the larger impact it has on the model. Therefore, the scores

together with the data points serve as the “state” in RL. Given the

state, the Search-Policy module in the agent selects the optimal

action (i.e., fetch a batch of fresh training data), and then feeds

them into AutoML again. Then the feedback of AutoML is used

as “reward” to learn the Search-Policy.

Demonstration Scenarios. AutoData works for multiple data

types. We will show two popular cases. (1) Image Classification.
AutoData can discover images from the external repositories
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Figure 2: A Running Example of AutoData

(e.g., images crawled from Google, Baidu or ImageNet [7]) to en-

rich the training set. We will demonstrate how the user sends

requests to AutoData and show the discovering process of im-

age data as well as the performance improvement in iterations. (2)
Relational Data Prediction. Our data repository includes data lakes

like NYUAuctus [6], where AutoData interacts with them through

APIs. For instance, given the Airbnb lodging price dataset in Boston,

AutoData can improve the regression model by searching useful

records from US lodging price datasets in other cities. The partici-

pants can pose queries to find lodging price datasets from multiple

sources that can further improve the model performance.

2 DEMONSTRATION SCENARIOS

In this section, we introduce two main scenarios — image classifi-

cation and relational data prediction — for AutoData and demon-

strate how AutoData retrieves more fresh data from the repository

to improve the model performance.

Settings: The users can specify a task, with datasets description,

AutoML framework and goals. (1)Data: identifies a set of “training”

datasets and a representative “test” dataset. Each dataset contains

a data source (e.g., a relational table), a data type (e.g., table or

image), a boolean value label to indicate whether this dataset is

labeled or not. (2) AutoML: determines the task type (such as

Classification or Regression) and the AutoML framework, which

is used to build the model(e.g., Auto-Keras, Auto-WEKA). (3) Goal:

sets a termination condition, including the budget for search and

performance requirement.

Scenario 1: Image Classification. A user needs to construct a DL

model to classify a set of images, which consists of different styles

of animal images. She provides 20 images of each class for training

and expects a DL model with at least 85% prediction accuracy. In

general, AutoData searches images crawled/downloaded from

Google, Baidu or ImageNet to improve the model performance,
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Figure 3: The Architecture of AutoData

which is low at the beginning because of the small and imbalanced

samples. For example, AutoData can supplement images of minor

classes or different styles (e.g., cartoon, hand-painted), so as to

improve the quality of the training dataset.

(1) Dataset. The user provides 10 classes of animals and 20 sample

images for each class as the training set. Also, she makes a test set,

in which there are 100 different images for each class. AutoData

cannot see the test data, but can test on it and get the performance

of model. The data repository of AutoData is multi-source and

heterogeneous, from data lakes, data markets and the Web.

(2) Task Specification. The user can provide dataset and specify the

settings through the web interface (Figure 2-❶). For example, the

user specifies an image classification task and provides a test set

together with a training set, aiming to obtain a DL model with an

accuracy of over 85%.

(3) Data Search. AutoData first initialize a model on the training

set. Next, AutoData will evaluate the influence score of each data

point. For example, as shown in Figure 2-❷, we can observe that

the training set is unbalanced in image styles, i.e., most of them are

images of real animals while other styles (e.g., cartoon) are minor.

This situation will be implicitly captured by AutoData because the
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images of other styles (e.g., cartoon) will get higher influence scores.
Then the agent module of AutoData will pay more attention to

these minority. That is AutoData will retrieve more images with

other styles (e.g., cartoon) from the data repository. In this way,

AutoData can successfully guess the unknowns and improve the

performance of classification task (Figure 2-❹).

(4) Results. A user can download the model with best performance

and data after the system stops. She can check the running status

of the system at any time (Figure 2-❸), e.g., the change of the model

performance. Once the model satisfies the goal specified by the user

or the budget is used up, AutoData terminates this task.

Scenario 2: Relational Data Prediction: A user wants to use the

DL model to predict the Airbnb lodging price in the US, which

is affected by geographical location. She only obtains the lodging

price dataset in Boston. AutoData can derive new data points from

other US cities(e.g., LA, NYC, etc) to improve the regression model,

which are related to the user input.

For relational data, AutoData first unions related multi-source

heterogeneous data together [14] in the data repository. Similar to

image data, AutoData valuates the influence of each data point

and retrieves new data based on the top-k influential data points.

For example, since NYC and Boston have similar prices of lodg-

ing, AutoData retrieves some data points there and improves the

performance of the model.

3 SYSTEM ARCHITECTURE

3.1 Overview

When a user provides a small training set, AutoData is designed to

search for more data to supplement it based on our reinforcement

learning framework. AutoData takes as input (D0, Settinд,De )

and outputs a final model with the best performance by iteratively

searching more data. We first briefly introduce the key compo-

nents of our RL framework and then show an overall pipeline of

AutoData.

Environment. In each iteration, environment takes as input train-

ing dataset, feeds it into AutoML and outputs the model perfor-

mance. Besides, it has a Valuator that computes influences of all

data points on the model. A data point with high influence indicates

that changing the point is likely to change the model a lot if we

retrain the model.

State(s) denotes the current model performance and influence

scores of all data points of the training set.

Reward(r ) is the performance change of the model between adja-

cent iterations, computed by acct − acct−1.

Agent. It takes as input the state and the reward, and outputs the

retrieved data points that are likely to improve the model perfor-

mance. This step is conducted by Search-Policy, considering the

relations between repository data and training data with high in-

fluences, as well as the model performance. Besides, the retrieved

data may be unlabeled, so Labeler can be used to label them [3, 15].

The Indexer is utilized to accelerate the search process [11].

Action(a) denotes a set of b data points retrieved from the data

repository, which will be added to the training set.

Suppose that D0 denotes the input dataset and De denotes the

test set. As shown in Figure 3, the user input is first sent to the

agent, where the Labeler labels the dataset if D0 is unlabeled. Then

D0 is fed into AutoML in the environment, where the subscript

denotes the t-th(t = 0) training iteration. After AutoML builds

the model, Valuator computes influences of all data points in Dt
on the model. These influences as well as the model performance

on De (state) are sent to the agent. Then Search-Policy takes an

action, i.e., efficiently fetching a batch of b data points through

the index, adds them to form a new training set Dt+1 and feeds it

into AutoML. Agent leverages Q-Table to estimate the long-term

reward(i.e., expected performance improvement) of each action,

and to select the optimal action with the largest long-term reward.

The above steps iterate until the terminating condition is achieved.

3.2 Valuator

In each iteration, the performance returned byAutoML can roughly

describe current state of the environment, but it is not enough to

guide the search. We should consider the characteristics of data

points in the training set for the ML task. To this end, Valuator
is proposed to compute the influence score of each data point on

current ML model using the influence function [9, 16].

Given a data point x , a high influence score I (x) indicates that
the model will change a lot if x has a minor change. This means that

x is a “weak point" of the model that is not fitted well, so it should

get more attention [9]. Specifically, the model change is described

as the parameter change, i.e., |θ − θ ′ |, where θ ′ is the optimized

parameter for training data containing x with a minor change, i.e.,

x+ϵ , and θ is the original parameter. However, retraining the model

for each modified x is prohibitively slow. Hence, based on [9], we

compute I (x) directly without retraining

I (x) = −H−1
θ ∇θ L(x, θ ) (1)

where Hθ =
1

n
∑n
i=1 ∇

2

θ L(xi , θ ) is the Hessian matrix, n is the size

of Dt , xi ∈ Dt and L is the loss function. Then we can compute the

influence score for each data point and model the state in a more

fine-grained way, which will be discussed next.

Encoding state using Valuator. In t-th iteration, after AutoML

constructing a newmodel, the Valuator computes the score I (x), x ∈

Dt , which will be normalized to [0,1]. Since the data points with

high influence scores have a large impact on the model, we select

top-k ones as signals to be sent to the Agent. The state can be rep-

resented by s = [(x1, I (x1)), ..., (xk , I (xk ))], where si = (xi , I (xi ))
and I (xi ) denotes the i-th largest influence score of data xi .

For efficiency, since I (xi ) is infinite and similar states are likely

to generate similar actions, we map influence scores into ten equi-

depth sub-ranges of [0,1] so that the search can be more efficient.

Here, we abuse I (xi ) to denote the sub-range that xi lies in. For
example, s1 = (x1, [0.9, 1]) denotes that x1 is the data point with
the largest influence score I (x1) which lies in [0.9,1]. The state can

also be extended by adding the model performance, which will be

discussed in Section 3.3.
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3.3 Search Policy

Given the state as input, theAgent uses the Search-Policy to choose
the optimal action with the expected largest reward, i.e., leading

to the highest performance improvement.

Constructing the state. Recap from Section 3 that the action is

defined as a set of b data points retrieved from the repository, but

the action space CbN is extremely large because the cardinality(N )

of the repository is large. Therefore, we simplify this problem by

retrieving a data point corresponding to each training point in s
independently, and thereby b = k . Then the action a is composed

of a set of sub-actions, i.e., a = {a1,a2, · · · ,ak }. At a high level, ai
aims to retrieve a new data point from the repository corresponding

to si .
Then we need to build the relation between the repository data

and training data, so as to guide the search. To this end, we pro-

pose to leverage the distance(denoted by dst(x, x ′)) between data

points to model the relation. For image data, we can use the cosine

similarity between the embedding vectors of two images as the

distance. For relational data, Euclidean distance between tuples

can be computed as the distance. Similar to the influence score, we

normalize the distance to [0,1] and divide it into ten equi-depth

sub-ranges. And more specifically, given si , the action ai aims to

select a sub-range δ and sample a data point x ′i , s.t. dst(xi , x
′
i ) ∈ δ .

For example, suppose that the distance is divided into sub-ranges

[0,0.1), [0.1,0.2),..., [0.9,1]. Given s2 = (x2, [0.8, 0.9)) for an image x2,
we compute a2 = [0.9, 1] using the policy. This means that we aim

to select an image x ′
2
in the repository so that dst(x2, x

′
2
) ∈ [0.9, 1].

The intuition is that these data points with high influence scores

serve as the weak points of current model. Therefore, we should

search the data similar to this weak point from the repository to

make the model more robust.

Next, we introduce how to design the Search-Policy to map the

state to an optimal action.

Policy design. Then, the Search-Policy needs to solve the problem

that given xi , what is the optimal ai , so that the performance of the

final model can be maximized. In order to solve this problem, we

consider two aspects: (A1) How to estimate the long-term rewards

of actions through the learning experience. (A2) How to store, learn

and update long-term rewards for actions.

To solve A1, we use Q-Function Q(si ,ai ) to estimate the long-

term rewards of ai , which indicates the expected improvement of

the model performance by taking ai under the state si , which is

computed by

Qt (si ,ai ) = Qt−1(si ,ai )+α
(
r +γ max

a′i
Q(s ′i ,a

′
i ) −Qt−1(si ,ai )

)
(2)

where t denotes the t-th iteration, α is the learning rate and γ is the

discount factor. Then, Search-Policy chooses the sub-actions with

the largest Q(si ,ai ) to maximize the model performance.

To solve A2, we use Q-Table to store long-term rewards and

apply the ϵ − дreedy strategy to learn and update the rewards.

To be specific, a 2-dimensional table is utilized to record the map

from states to actions. In the table, each row represents the state

si and each column represents the action ai . Correspondingly, we
record the long-term reward Q(si ,ai ) in each cell of the table. For

example, as shown in Figure 4, given s2 = (x2, [0.9, 1.0]) and a2 =

0.02 0.05 0.01 0.01

0.01 0.01 0 0

0.03 0.01 0.02 0

0.01 0 0 0.01

[0.9,1.0]

[0.8,0.9)

[0.7,0.8)

[0.6,0.7)

[0.9,1.0] [0.8,0.9) [0.7,0.8) [0.6,0.7)I(x) δ

Figure 4: An Example of Q-Table

[0.8, 0.9), then Q(s2,a2) = 0.05, that means the model may gain 5%

performance improvement when choosing a2 for s2.
Then, we use the ϵ − дreedy strategy to balance exploration and

exploitation, so that Search-Policy can obtain enough experiences

to learn the long-term rewards. In the beginning, there are no

experiences to make a reasonable decision. Thus, ϵ is set to a larger
value(e.g., 0.9). Then, when choosing an action, Search-Policy has a

90% probability of randomly choosing an action. Therefore, Search-
Policy can explore more different actions. However, in the later

period, to make the agent learn more from existing experience and

use of the learned search strategy, ϵ should decrease.

Besides, when taking model performance in state s into consid-

eration, we can easily extend Q-table to three-dimensional to learn

a more fine-grained search policy.
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