
Deep Learning for Blocking in Entity Matching:
A Design Space Exploration

Saravanan

Thirumuruganathan

QCRI, HBKU, Qatar

sthirumuruganathan@hbku.edu.qa

Han Li

Amazon, USA

lahl@amazon.com

Nan Tang

QCRI, HBKU, Qatar

ntang@hbku.edu.qa

Mourad Ouzzani

QCRI, HBKU, Qatar

mouzzani@hbku.edu.qa

Yash Govind

Informatica, USA

ygovind@informatica.com

Derek Paulsen

UW-Madison, Informatica,

USA

dpaulsen2@wisc.edu

Glenn Fung

American Family Insurance,

USA

gfung@amfam.com

AnHai Doan

UW-Madison, Informatica,

USA

anhai@cs.wisc.edu

ABSTRACT
Entitymatching (EM) finds data instances that refer to the same real-

world entity. Most EM solutions perform blocking then matching.

Many works have applied deep learning (DL) to matching, but far

fewer works have applied DL to blocking. These blocking works are

also limited in that they consider only a simple form of DL and some

of them require labeled training data. In this paper, we develop the

DeepBlocker framework that significantly advances the state of

the art in applying DL to blocking for EM. We first define a large

space of DL solutions for blocking, which contains solutions of

varying complexity and subsumes most previous works. Next, we

develop eight representative solutions in this space. These solutions

do not require labeled training data and exploit recent advances

in DL (e.g., sequence modeling, transformer, self supervision). We

empirically determine which solutions perform best on what kind

of datasets (structured, textual, or dirty). We show that the best

solutions (among the above eight) outperform the best existing

DL solution and the best existing non-DL solutions (including a

state-of-the-art industrial non-DL solution), on dirty and textual

data, and are comparable on structured data. Finally, we show that

the combination of the best DL and non-DL solutions can perform

even better, suggesting a new venue for research.

PVLDB Reference Format:
Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash

Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. Deep Learning for

Blocking in Entity Matching:

A Design Space Exploration. PVLDB, 14(11): 2459 - 2472, 2021.

doi:10.14778/3476249.3476294

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/saravanan-thirumuruganathan/DeepBlocker.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476294

1 INTRODUCTION
Entity matching (EM) finds data instances that refer to the same

real-world entity. This long-standing challenge has received much

attention [16, 18, 22, 27, 66]. Most EM solutions perform blocking

then matching. Given two tables A and B to match, the blocking
step uses heuristics to quickly remove tuple pairs (a ∈ A,b ∈ B)
judged unlikely to match. Thematching step then applies a matcher

to the remaining tuple pairs to predict match/no-match.

Recently, as deep learning (DL) became popular, many works

have applied it to EM. They have shown that DL is very promising

for the matching step [5, 13, 25, 48, 49, 55, 68, 82] (see [5] for a

survey). In contrast, the blocking step has received far less attention.

As far as we can tell, only a few recent works have applied DL to

this step [4, 25, 35, 81]. A key idea is to convert each tuple a ∈ A
and b ∈ B into an embedding vector, then quickly find tuple pairs

with a high similarity score (e.g., cosine) between their vectors.

These works show the promise of DL for blocking, but are limited

in important ways. First, they consider only a relatively simple way

to convert each tuple into a vector, namely by combining the vectors

of the words in the tuple using unweighted or weighted averaging.
This method is called aggregation in the DL literature [3]. However,

recent DL work for non-EM tasks (such as NLP, image processing)

has developed many more ideas that can be used to combine the

word vectors (e.g., sequence modeling [34], transformers [77], and

self training [31, 41, 78]). Adapting these ideas for blocking in EM

can potentially improve blocking accuracy.

Another limitation of the existing works is that some of them

require labeled data, e.g., AutoBlock [81] uses this data to learn

the weights for combining the word vectors based on semantics,

position, and the surrounding context. Such labeled data is difficult

to generate for blocking in many real-world EM scenarios.

In this paper we address the above two limitations and signifi-

cantly advance the state of the art in DL-based blocking for EM, in

the following three important ways.

Developing Self-Supervised Solutions for Blocking: We

show that self-supervised techniques used in recent DL work (for

non-EM tasks) can be adapted for blocking. Briefly, we define a

supervised learning task, also called an auxiliary task, for which we

can automatically derive labeled data from the tuples of Tables A
and B. Next, we use the labeled data to train a DL model to solve the

above task. Then we use a part of the trained DL model to produce

https://doi.org/10.14778/3476249.3476294
https://github.com/saravanan-thirumuruganathan/DeepBlocker
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476294

embedding vectors for the tuples in A and B. Finally, we quickly
find tuple pairs with high similarity score between their vectors.

Defining a Rich Space of DL Solutions: Since numerous self-

supervised DL solutions can be developed for blocking, we propose

to organize them as well as existing solutions into a unifying space.

This space provides an important conceptual framework that we can

use to classify, compare, and understand DL solutions for blocking.

Specifically, we consider an architecture template of DL solutions

that has three main steps. (1) For each tuple t in tables A and B,
we compute an embedding vector for each token (i.e., word) in t .
(2) We combine these vectors into an embedding vector for the

entire tuple t . (3) We quickly find tuple pairs (a ∈ A,b ∈ B) with
highly similar vectors, using a similarity measure (e.g., cosine). For
each of the above steps, we discuss multiple choices, thereby defining
a rich space of DL solutions.

In particular, for Step 2, we discuss two groups of choices: ag-
gregation and self-supervision. Existing works use aggregation (e.g.,

averaging), whereas the self-supervision group contains solutions

newly developed in this paper. For self-supervision, we consider

four types of auxiliary tasks: self-reproduction, cross-tuple train-
ing, triplet loss minimization, and hybrid. For each type of tasks,

we develop a DL solution architecture, which consists of multiple

components, such as aggregator, summarizer, classifier, etc. We

then show that each component can be instantiated with many

possible DL models, e.g., LSTM, transformer, etc., resulting in many

self-supervised solution choices for Step 2.

Evaluating Representative DL Solutions: From the large space

of possible DL solutions, we select eight representative solutions:

(i) SIF– a state-of-the-art aggregation solution using weighted av-

eraging; (ii) Autoencoder, (iii) Seq2seq, (iv) Trans-encoder– three

solutions that use the popular encoder/decoder framework to solve

self-reproduction tasks (these solutions use feed-forward neural

networks, LSTMs, and transformers as encoders/decoders, respec-

tively); (v) CTT, (vi) CTT-cosine- two solutions that use cross-tuple

training; (vii) SBERT– a solution that uses triplet loss minimization

and is based on Sentence-BERT; and finally (viii)Hybrid– a solution

that combines autoencoding with cross-tuple training.

We compare these solutions to one another, and to RBB, an
industrial non-DL blocking solution, and BSL [53] and TB [61],

two state-of-the-art non-DL solutions. Following recent EM work

[13, 25, 48, 55, 64, 82], we evaluate the above solutions on multiple

EM tasks using three types of datasets (structured, textual, and

dirty).

Our findings are as follows. First, among the eight DL solutions

described above, in terms of maximizing recall while minimizing

the output size, Autoencoder performs the best on structured and

dirty datasets, while Hybrid is the best on textual datasets. But

even on textual datasets, Autoencoder is just slightly worse than

Hybrid. This is interesting as Autoencoder’s self-training method

is relatively simple compared to those used by CTT and Hybrid.
Second, the best DL solutions (Autoencoder on structured/dirty

and Hybrid on textual) outperform AutoBlock, the best existing DL
solution for blocking (which uses labeled data), suggesting that we

do not need labeled data to achieve good blocking performance.

They also outperform RBB, the industrial non-DL blocking solution,

on textual/dirty data, and are comparable on structured data. RBB
in turn outperforms BSL and TB, the two non-DL solutions.

Finally, unioning the output of the best DL solutions (Autoen-
coder on structured/dirty and Hybrid on textual) with the output of

the best non-DL solution (RBB) significantly increases recall, while

increasing the blocking output size only modestly. This suggests

that DL and non-DL solutions can be highly complementary and

combining them can be a promising future research direction.

The rest of the paper is as follows. We introduce the relevant

background on blocking in Section 2. We describe the components

of design space in Section 3 and enumerate the concrete instan-

tiations in Section 4. Our experimental results are presented in

Section 5 followed by related work and parting thoughts in Sec-

tions 6 and 7 respectively. Additional details about the experiments

can be found in a technical report [1].

2 PRELIMINARIES

Entity Matching (EM): This problem has received much atten-

tion [17, 18, 56, 73]. Many EM scenarios exist, e.g., matching two

tables, matching within a table, matching a table with a knowledge

base, etc. Here we will consider the following common EM scenario:

given two tables A and B with the same schema, find all tuple pairs

(a ∈ A,b ∈ B) that match, i.e., refer to the same real-world entity.

Scenarios of tables with the same schema (i.e., same attributes) are

very common, e.g., many real-world EM tasks match tuples within
the same table, which can be viewed as matching two tables with the

same schema. Further, even when matching tables with different

schemas, most existing EM solutions [17, 18, 56, 73] examine only

the attributes shared by both tables. This is because given any two

tuples, these solutions must be able to determine their similarity,
which reduces to examining the similarities of the shared attributes.
Our solutions can still handle tables with differing schemas, but

will examine only the attributes shared by the tables.

Most EM solutions perform blocking thenmatching. The blocking
step uses heuristics to quickly remove pairs (a,b) judged unlikely

to match. The matching step applies a matcher to predict match/no-

match for each remaining pair. In this paper, we focus on applying

DL to the blocking step.

Non-DL Work for Blocking: Blocking has received much at-

tention (see [60, 66, 74] for surveys). Well-known blocker methods

are attribute equivalence, hash, and sorted neighborhood. Attribute
equivalence (AE) outputs a pair of tuples if they share the same

values of a set of attributes. Hash blocking (also called key-based
blocking) is a generalization of AE, which outputs a pair of tuples if

they share the same hash value, using a pre-specified hash function.

Sorted neighborhood outputs a pair of tuples if their hash values

(also called key values) are within a pre-defined distance.

More complex types of blockers include similarity, rule-based,

and composite blocking [17, 19, 30]. Similarity blocking is similar

to AE, except that it accounts for dirty values, misspellings, ab-

breviations, and natural variations by using a predicate involving

string similarity measures, such as edit distance and Jaccard [80].

Rule-based blocking employs multiple blocking rules, where each

rule can employ multiple predicates (e.g., if the Jaccard score of

the titles is below 0.6 and the years are not equivalent, then the

Name City Age
Daniel Smith LA 18
Joe Welson New York 25

Chuck Williams Chicago 45

Name City Age
Joe Wilson NY 25
Dan Smith LA 30

Daniel Smith LA 18

Joe Welson New York 25

Chuck Williams Chicago 45

Joe Wilson NY 25

Dan Smith LA 30

a1

a2

a3

b1

b2

s1:

s2:

s3:

t1:

t2:

1.
W

or
d

em
be

dd
in

g

C
on

ca
te

na
tio

n

C
on

ca
te

na
tio

n

2.
Tu

pl
e

em
be

dd
in

g

Q(S, T)

T

S

3.
Ve

ct
or

-b
as

ed
 p

ai
rin

g

Candidate Set

A

B

Figure 1: Our architecture template for DL-based blocking.

two papers do not match) [19, 30]. Composite blocking (e.g., canopy

blocking [51]) generalizes rule-based blocking and can combine

arbitrary blocking methods.

The above blocking methods typically assume that Tables A and

B share the same schema. Schema-agnostic blocking, a.k.a. token-
based blocking, is a recently developed method that does not make

that assumption (it drops a tuple pairs if the tuples do not share

enough tokens) [72]. Meta-blocking techniques [26, 63, 65, 71] im-

proves upon this process by constructing a blocking graph and

using it to discard redundant comparisons. Finally, methods to learn
blockers (e.g., rule-based ones) have also been developed [19, 30, 66],
typically using a set of tuple pairs labeled match/no-match.

DL Work for Blocking: Compared to the vast body of non-

DL work for blocking, there have been far fewer DL works. To

our knowledge, the earliest work is DeepER [25], which computes

a tuple vector via unweighted aggregation of the vectors of the

individual words. A recent work, AutoBlock [81], improves upon

this by using a set of tuple pairs labeled as match/no-match to learn

the weights for the aggregation. DeepBlock [35] still performs key-

based blocking (a non-DL method), but optimizes it by using word

embedding to compute the semantic similarity between the keys.

Our Problem Setting: We consider the problem of blocking two

tablesA and B with the same schema. We do not assume any labeled

training data. Let C be the set of tuple pairs produced by applying

a blocker to Tables A and B. We seek to develop solutions that

maximizes the recall |C ∩G |/|G |, whereG is the set of (unknown)

true matches, while minimizing |C | and the time taken for blocking.

3 A DESIGN SPACE OF DL SOLUTIONS
Drawing from the extensive work on blocking and DL, we now

describe an architecture template for DL solutions for blocking,

together with a set of choices for each module in the template.

3.1 Architecture Template & Design Space
Figure 1 shows our architecture template for DL solutions for block-

ing. Given two tables A and B, we first convert each tuple into a

string by concatenating all of its attribute values. For example, tuple

a1 in Table A becomes “Daniel Smith LA 18” (see Figure 1). We use

all attributes because in the absence of human input and labeled

training data, we do not know which attribute is more important.

So a reasonable solution is to concatenate all of them and let our

Table 1: The design space of DL solutions for blocking.

Template Module Choices

Word Embedding

Granularity

(1) Word

(2) Character

Training

(1) Pre-trained

(2) Learned

Tuple Embedding

(1) Aggregation based

(a) Simple average

(b) Weighted average (e.g., SIF)

(2) Self-supervised

Many choices exist for each type of auxiliary tasks:
(a) Self-reproduction

(b) Cross-tuple training

(c) Triplet loss minimization

(d) Hybrid

Vector Pairing

(1) Hash (e.g., LSH)

(2) Similarity based

(a) Similarity measure: Cosine, Euclidean

(b) Criteria: Threshold, KNN

(3) Composite

proposed DL solutions learn to identify the most important features

in an unsupervised way.

The resulting strings are then fed into three main modules:

Word Embedding, Tuple Embedding, and Vector Pairing. TheWord
Embedding module converts each word in the string into a high-

dimensional vector. The Tuple Embedding module combines these

vectors into another vector representing the entire string, i.e., the

original tuple. For example, recall that tuple a1 in Table A in Figure

1 is converted into string “Daniel Smith LA 18”. The Word Embed-

ding module converts this string into four vectors (represented as

four vertical red lines), then the Tuple Embedding module combines

these four vectors into a single vector (see Figure 1).

At this point, each tuple in Tables A and B has been converted

into an embedding vector. For example, Table A in Figure 1 has

been converted into Table S of three vectors, and similarly Table

B into Table T (see the right side of the figure). Finally, the Vector
Pairingmodule will quickly search Tables S andT , using a procedure
Q(S,T), to find pairs of vectors that are similar. The corresponding

pairs of the original tuples (from TablesA and B) are then output as

the set of candidate tuple pairs for the subsequent matching step.

Our architecture template provides a set of choices for each

module as shown in Table 1. Next we describe the choices, whose

combination forms a design space of DL solutions for blocking.

3.2 Word Embedding Choices
This module converts each word in a string into an embedding

vector. There are four main choices.

Word-level vs. Character-level Granularity: Given a sequence

of words, a word-level embedding encodes each word as a fixed-

dimensional vector. Typically, this is achieved through a lookup

table that maps words to embeddings [54]. Any word not present

in the vocabulary (e.g., rare words) triggers an out-of-vocabulary

(OOV) case and is often replaced with a special token.

Character-level embedding [39] (or sub-word embeddings in

general) treats each word as a sequence of sub-word units, such as

individual characters, bi-grams, tri-grams, etc. and uses a neural net-

work to produce a vector based on the character composition of the

Table 2: The many possible solutions to compute tuple embeddings.

Auxiliary Tasks Solution Architectures Instantiation Examples

Self-Reproduction Aggregator + Encoder + Decoder

• Aggregator: SIF, LSTM, . . .

• Encoder/Decoder: Feed-Forward NN, LSTM, Transformer

Cross-Tuple Training Aggregator + Summarizer + Classifier

• Aggregator: SIF, LSTM, . . .

• Classifier: Feed-Forward NN, LSTM, Cosine

Triplet Loss Minimization Aggregator + Loss Minimizer • Aggregator: BERT, . . .

Hybrid

Many possible architectures exist, e.g.:

• encoder + summarizer + classifier

• SBERT aggregator + summarizer + classifier

• Each architecture has many components

• Each component has many instantiation choices as listed above

word. This approach can transparently handle the morphological as-

pects of words (such as ‘data’, ‘database’ and ‘dataset’), can produce

an embedding for any out-of-vocabulary words, and is robust to

common misspellings. Thus, this may work well for EM scenarios

with custom vocabularies and widespread misspellings [55].

Pretrained vs. Learned Embeddings: An orthogonal design

choice relates to how the embeddings were trained. Popular word-

level embeddings such as word2vec [54] and GloVe [69] and

character-level embeddings such as fastText [9] often come with

pre-trained embeddings that are trained on a large generic external

corpus such as Wikipedia, Common Crawl or PubMed. Alterna-

tively, they could be trained on the dataset for which EM has to be

performed.

3.3 Tuple Embedding Choices
This module combines the embeddings of the words in a tuple into

an embedding for the entire tuple. A key challenge is to ensure that

similar tuples have similar embeddings without labeled data. To

address this, we consider two broad categories of promising DL

techniques: aggregation and self-supervision.

AggregationMethods: These methods apply an aggregation func-

tion F : Rde×· → Rdu to produce a tuple embedding ut . The most

popular method is averaging, e.g., DeepER [25] uses unweighted

averaging where each word embedding has equal weight, while SIF
[3] uses weighted averaging.

Since later we experiment with SIF, we now describe it in more

details. SIF works as follows. First, for each tuple, we calculate a

weighted average over the word embeddings to obtain the aggre-

gation vector. Given a word w in the tuple string, the weights of

its word embedding is given as f (w) = a/(a + p(w)) where a is a

hyper-parameter and p(w) the normalized unigram frequency ofw
in the dataset. Next, we calculate the first principal component of

the aggregation vectors using PCA. Finally, we calculate the tuple

embedding for each tuple by subtracting the projection of its aggre-

gation vector over the first principal component. Specifically, let vt
be the aggregation vector for the tuple t , and p be the first principal

component, the tuple embedding ut = vt − ppT vt . SIF is shown to

perform comparably to complex models for NLP tasks such as text

similarity [3] and generalizes the unweighted averaging approach

of DeepER [25].

As described, aggregation methods do not involve any learning

and can be implemented efficiently. But they take a bag-of-words

approach where the ordering information is disregarded. Thus,

the tuples ‘A bought B’ and ‘B bought A’ will have the same em-

bedding. Further, they cannot handle polysemy where the same

word/phrase could have multiple meanings, thus producing the

same word embedding for ‘Apple’ in the phrases ‘Apple tv’ and

‘Apple tree’. More sophisticated embedding approaches, which we

discuss next, address these limitations.

Self-Supervised Methods: These methods adapt the self-

supervision idea popular in recent DL works [21, 23, 36, 54, 58].

They work as follows: (1) Define a supervised learning task, also
called an auxiliary task, for which we can automatically derive

labeled training data from the tuples of Tables A and B. (2) Solve
the above task using a DL model trained on the labeled data. (3) Use

parts of the trained DL model to produce embeddings for the tuples

in Tables A and B.
In what follows, we consider four types of auxiliary tasks (see

Table 2): self-reproduction, cross-tuple training, triplet loss min-

imization, and hybrid. For each type, we discuss a promising DL

solution architecture. We show that such an architecture typically

consists of multiple components (e.g., aggregator, summarizer, etc.),

and that for each component, we can have many possible instanti-

ations (e.g., an aggregator can be a simple unweighted averaging,

a feed-forward NN, or a LSTM), as illustrated in Table 2. Thus,

each combination of the instantiations produce a solution for tuple
embedding, giving rise to a rich set of such solutions.

It is important to note that, as far as we know, existing work

(e.g., DeepER and AutoBlock) has considered only aggregration

methods for blocking (see Section 2). Thus a key technical novelty of
this work is that we adapt the idea of self supervision popular in the
recent DL literature to blocking for EM, and that we develop a range
of such solutions, which we describe in the next four subsections.

3.4 Self-Reproduction Methods
These methods use the simplest auxiliary task: self-reproduction.
Roughly speaking, they take a tuple t , feed it into a neural network

(NN) to output a compact embedding vector ut , such that if we

feed ut into a second NN, we can recover the original tuple t (or
a good approximation of t). If this happens, ut can be viewed as

a good compact summary of tuple t , and can be used as the tuple

embedding of t . The above two NNs are called encoder and decoder,
respectively. Such so-called autoencoder frameworks have been used

extensively in other tasks, such as dimensionality reduction. But to

our best knowledge they have not been used for blocking for EM.

Input: word embeddings
for the tuple string

t

Word Embeddings

(Gold iPhone 8)

Aggregator Encoder Decoder

Hidden representation

Figure 2: The autoencoder model architecture.

Input: word embeddings
for the tuple string

t

Word Embeddings

(Gold iPhone 8)
(Gold) (iPhone) (8) (Gold)

iPhone

(iPhone)

8

Encoder Decoder

Hidden representation

Figure 3: The seq2seq model architecture.

We now describe two autoencoding methods, Autoencoder and
Seq2seq, which we later evaluate in depth. Then we build on these

two to discuss other possible autoencoding methods.

Autoencoder - A Feed-Forward Neural Network Method:
This is a relatively simple autoencoding method (hence the generic

name Autoencoder). Recall that we want to build a model that ac-

cepts the word embedding sequence et (of a tuple t) as input, and
generates an output vector ot that recovers the information in et .
Ideally, we want the model to reproduce et exactly (i.e. ot = et),
and train the model for this goal.

As shown in Figure 2, our model consists of an aggregator, an

encoder and a decoder. We use a two-layer feed-forward NNs with

the Tanh activation function for both the encoder and decoder.

The feed-forward NN cannot accept word embedding sequences of

variable lengths as input. Hence, we modify the classic autoencoder

model by performing an aggregation operation f (·) in the first step

to convert et ∈ Rde×· into a fixed-size vector vt = f (et) where
vt ∈ Rde . For the aggregation implementation, we use the SIF

model [3] which calculates a weighted average vt over the word
embeddings in et . Next, the encoder receives vt as the input and
generates a hidden vector ut ∈ Rdu . Then the decoder uses ut to
produce the output ot ∈ Rde such that it approximates vt .

The training loss on the tuple t is defined as lt = | |vt − ot | |2
2
,

which is the squared ℓ2 distance between the aggregation vector and

the output vector. The training goal is to update the parameters in

the encoder and the decoder such that the training loss is minimized.

Once the training is done, to generate the tuple embedding for a given
tuple t , we feed the word embedding sequence et of t to the aggregator
followed by the encoder. We use the generated hidden representation
vector ut as the tuple embedding vector for t .

Seq2seq - A Sequence-to-Sequence Method: Autoencoder is
not sequence aware. It produces the same aggregation vector for

any permutation of the input string. We now describe Seq2seq, an
approach that is sequence aware: given a word sequence wt and

the corresponding embedding sequence et , it reproduceswt .

Similar to Autoencoder, Seq2seq also consists of an encoder

and a decoder. But they are LSTM-RNNs [34], which can handle

sequences with variable length, as shown in Figure 3. The LSTM-

based encoder takes each embedding vector in et one-by-one to
get a hidden representation vector ut . Formally, given the i-th
embedding et [i] in et , the LSTM unit LSTMenc takes et [i] and the

hidden state henc [i−1] from the previous step as input to produce a

new hidden state henc [i] = LSTMenc (et [i],henc [i − 1]). We denote

the last hidden state output as ut , which will be used as the context

for the decoder to recover the word sequence. For the first hidden

state input henc [0], we randomly initialize the vector.

For the decoder, we use a combination of an LSTM LSTMdec and

a one-layer feed-forward NN Out to recover the word sequencewt .

First, the hidden state ut will be used as the initial state hdec [0] for
LSTMdec , which serves as the context for the sequence decoding.

Second, we pass the i-th word embedding et [i], the context ut ,
and the previous hidden state hdec [i − 1] to the decoder and try to

predict the next word in the sequencewt [i + 1].
This can be further decomposed into two sub-steps. First, we

pass the three vectors et [i], ut , and hdec [i−1] to the LSTM decoder

to get the hidden state hdec [i] = LSTMdec (et [i], ut ,hdec [i − 1]).

Once we have the hidden state hdec [i], we send it through the feed-

forward NN Out, to output a score vector oi = Out(hdec [i]) ∈ R |V |

over the entire word vocabulary V . The j-th index oi [j] is a score
indicating how likely the next word in the sequence will be the j-th
word in the vocabulary V . As we want to predict the next word

wt [i + 1] in the sequence, supposewt [i + 1] is the k-th word in the

vocabulary, we want oi [k] to be the largest value in oi .
For the model training objective, we use the cross-entropy loss

for each position i to maximize the value in oi whose index corre-
sponds to the index of the wordwt [i + 1] in the vocabulary. Note

that in the decoding procedure, besides using ut as the context to
the LSTM, we also use it as a part of the input for each decoding

step, as shown by the blue bar in Figure 3. The reason is that we

want to learn ut such that it will affect the recovery of each word

in the sequence. This will reduce the importance of the LSTM in

decoding and force ut to summarize the information in et well to
be able to recover the word sequence. Given the embedding sequence
et for a tuple t , we apply et to the LSTM encoder LSTMenc , and the
last hidden state output ut will be used as the tuple embedding.

More Self-Reproduction Methods: As described, a promising

DL solution architecture to solve the self-reproduction task consists

of three components: aggregator (optional), encoder, and decoder.

So far, we have discussed one instantiation for the aggregator (SIF)
and two possible instantiations for the encoder and decoder (feed-

forward NN and LSTM). However, we can supply more instantia-

tions for these components. For example, one could replace LSTM

with standard transformer (encoder/decoder). We refer to this in-

stantiation as Trans-encoder. Alternatively, one could use LSTM

(instead of SIF) for the aggregator in Autoencodermaking the latter

sequence-aware. Each combination of these instantiations produce

a possible method to compute tuple embeddings.

3.5 Cross-Tuple Training Methods
The self-reproduction approach exploits information within a sin-

gle tuple to generate tuple embeddings. Our next approach, CTT,
exploits information across tuples. The key idea is to perturb the

tuples of TablesA and B to generate synthetic labeled data, which is

a set of tuple pairs (ti , tj)with match/no-match labels, then use this

data to train a DL model to produce tuple embeddings, such that

the embeddings of a matching tuple pair are closer to each other

while those of non-matching tuple pairs are farther from each other.

To explain CTT, we first consider an ideal scenario where labeled

data is available, then show how to generate synthetic labeled data.

Ideal Model Implementation: Suppose we are given a set of

tuple pairs C ⊆ A × B with match/non-match labels. We can then

train a classifier to predict for each pair in C the correct label.

This is achieved in two steps. First, given a tuple pair (a ∈ A,b ∈

B) we transform their embedding sequences ea and eb into tuple

embeddings ua and ub . Next, we train a classifier that takes ua and

ub and predicts the correct label. The key insight is that in order to

do well on the prediction task, the model has to learn to generate

effective tuple embeddings that is relevant for correctly matching

predictions from tuple comparisons.

Ideally we generate the set C as follows. Suppose that we have

the set M ⊆ A × B containing all matching pairs. We can simply

take all pairs inM as the positive training instances. To generate the

negative training data, we can select a set of tuple pairs from A× B
that are not inM as the negative training instances. Specifically, let

E = A∪B. For each tuple t ∈ E, we randomly select a set St ⊆ E of p
tuples (where p is a hyperparameter), to form a set of non-matching

pairs Nt = {(t, s)|s ∈ St } satisfying each pair (t, s) < M . We repeat

this procedure for every tuple t ∈ E, and finally we take the union

N = ∪{t ∈E }Nt as the negative training data.

We then use the labeled dataset C = M ∪ N to learn the embed-

dings. Figure 4 shows the model architecture. This model consists of

three modules: an aggregator, a Siamese summarizer, and a classifier.

Given a pair of word embedding sequences e1 and e2 from C , we
first apply the aggregator to convert each embedding sequence into

a fixed-size vector respectively, denoted as v1 ∈ Rde and v2 ∈ Rde .
We use the SIF model for the embedding sequence aggregation.

Next, for each ofv1 andv2, we use a Siamese summarizer, which

is a two-layer feed-forward neural network, to generate a summa-

rized vector u1 ∈ Rdu and u2 ∈ Rdu , respectively. Then, we take
an element-wise absolute difference between u1 and u2, and send it
to the classifier, which is a two-layer feed-forward neural network,

to predict a label indicating the input pair a match or a non-match.

The training goal is to learn the model parameters in both

Siamese summarizers such that the predictions are the same as

the gold labels in the training data. The use of a Siamese network

reduces the capacity of the model as both summarizers use the same

model parameters. Given the embedding sequence et for tuple t in A
or B, we apply the aggregator followed by the Siamese summarizer
in the trained CTT model. The generated summarization vector ut is
used as the tuple embedding.

Approximating the Ideal Training Data. In order to implement

the ideal approach mentioned above, we need to know all matching

pairs inM ⊆ A × B in advance. However, this means that we have

already solved the EM problem! We next propose a data generation

procedure for approximating the ideal training data without having

access toM . Once again, let E = A∪B. For each tuple t ∈ E, we have
to generate one positive training instance and p negative instances.

We use a simple but effective heuristic for generating positive

tuple pairs. Given a tuple t , we obtain theword sequencewt through

Tuple a

(Black iPhone 8)

Tuple x

(Gold iPhone)

Aggregator

Prediction

Siamese
Summarizer Classifier

Summarization
vector

Figure 4: The CTT model architecture.

concatenation. We need to generate another tuple t ′ (ideally in E)
that is likely to be a match for t . However, at this point we do

not know which tuple matches t . To solve this conundrum, we

generate a synthetic matching tuple string by randomly selecting a

subset of words fromwt , denoted asw ′
t . Sincew

′
t is selected from

wt , we associate a label “1” for this pair (wt ,w
′
t) indicating it is a

match. Varying the proportion of overlapping strings increases the

likelihood that it is indeed a match. In our experiments, we ensure

that the synthetic tuple has at least 60% overlap.

To generate a negative instance, we randomly select a tuple s
in E (excluding t), concatenate the attribute values of s to getws ,

and usews as the second tuple. As the tuple s is randomly selected,

it will very likely be a non-match to t since usually matches are

rare compared to non-matches. We associate a label “0” indicating

a non-match for the pair (wt ,ws). We repeat this procedure p times

with p random tuple selections in E, which gives us p negative

training instances. We repeat the procedure for every tuple in the

tables A and B, and finally take the union of the training instances

for every tuple as the approximated training data. Once we have

the approximated training data, we train a CTT similar to the way

we train in the ideal training scenario.

ARange of CTTMethods: As described, the CTT approach uses a

DL architecture that consists of three main components: aggregator,

summarizer, and classifier. So far, we have used SIF, Siamese sum-

marizer, and a two-layer feed-forward NN for these components,

respectively. However, we can easily provide more instantiations

such as replacing SIF with LSTM in the aggregator. Each combina-

tion of these instantiations (see Table 2) produce a possible method

to compute tuple embeddings.

An interesting extension of CTT that we consider is CTT-cosine.
In this solution, we replace the feed-forward neural network used in

theCTT classifier with a simple cosine similarity. This is appropriate

as a number of options in the vector pairing module are based on

cosine similarity. Given a tuple t , a positive perturbation t ′ and p
tuples from the negative set Nt , CTT-cosine seeks to fine-tune the

embeddings such that the cosine similarity score between t and t ′

is maximized.

3.6 Triplet Loss Minimization Methods
This approach adapts the triplet method used in many recent DL

tasks [7, 15, 45]. It works as follows. First, we generate synthetic

training data, which is a set of triplets. Each triplet (x,y, z) consists
of a tuple x , a synthetic tupley that matches x , and a tuple z that does
not match x . For each tuple ti in Tables A or B, we generated L per-

turbations pi ,1, . . . ,pi ,L by randomly removing up to 40% of words

A B A’ B’ A B

Prediction

Encoder Siamese
Summarizer Classifier

Tuple a

(Black iPhone 8)

Tuple x

(Gold iPhone)

Figure 5: The Hybridmodel architecture.

from ti . Then we pick L random tuples ni ,1, . . . ,ni ,L . Finally, we
generate L triplets of the form {(ti ,pi ,1,ni ,1), . . . , (ti ,pi ,L,ni ,L)}.

Next, we train a DL model such that the model produces vec-

tor embeddings for x,y, and z, and the embeddings for x and y
are close while those for x and z are far apart. We use a pre-

trained BERT [21] to produce embeddings and the SBERT (Sentence-
BERT) [70] approach for tuple aggregation. We use the Triplet loss

function [7, 15, 45] defined as

max

(
| |Emb(x) − Emb(y)| |2 − ||Emb(x) − Emb(z)| |2 + α, 0

)
Emb(x) provides the embedding for tuple x and α is the distance

margin to be ensured between positive and negative tuple pairs.

BERT is based on transformers, a model more powerful than

LSTMs and commonly used to capture sequential information.

BERT has been used to summarize a tuple for the matching step of

EM [13, 48]. We believe it can also be used to summarize a tuple,

i.e., produce a tuple embedding, for blocking. Such embeddings can

capture not just the word ordering but also other contextual infor-

mation, allowing us to distinguish for instance the word “Apple” in

“Apple tv” vs “Apple tree”.

After training, we use the aggregator component of SBERT to
produce vector embeddings for the tuples. Further, we can replace the

aggregators in the SBERT solution with any NN that can aggregate

a sequence of vector embeddings into a single vector embedding,

to obtain another method to compute tuple embeddings.

3.7 Hybrid Methods
Each method to compute tuple embeddings that we have discussed

so far uses just one auxiliary task: self-reproduction, cross-tuple

training, or triplet loss minimization.We can developmany “hybrid”

methods, each of which uses two or more auxiliary tasks.

For example, we can combine Autoencoder and CTT to generate

tuple embeddings that take into account both in-tuple and cross-

tuple information. To do so, we use a stacked training procedure

consisting of two sub-training tasks. Given the word embedding

sequences of tuples in A and B, we train an Autoencoder modelM1

as described earlier, and then a CTTmodelM2. The training step for

M2 is as described earlier, except that we use a modified version of

the original CTTmodel. Instead of SIF, we use the (trained) encoder
ofM1 as the aggregator forM2.

Note thatM1 andM2 are stacked by trainingM1 first thenM2,

as opposed to training M1 and M2 jointly. The reason is that we

want to keep the two models M1 and M2 separate to avoid cross-

tuple information diffusing to the model parameters ofM1 (if we do

the joint training), such thatM1 does not summarize the in-tuple

informationwell. Once the training is completed, this stackedmodel

could be used to generate tuple embeddings. Given the embedding
sequence et for tuple t in A or B, we feed et to the aggregator (which
is the encoder inM1) followed by the Siamese summarizer inM2, and
use the output as the tuple embedding vector.

Figure 5 illustrates the proposed architecture, which we will

simply callHybrid. Note thatmany other possible “hybrid” solutions

exist, e.g., using a BERT module (trained in the SBERT solution) as

the aggregator, see Table 2. While such hybrid models are quite

powerful in terms of the model capacity and expressiveness power,

they also take longer time to train.

3.8 Vector Pairing Choices
So far we have discussed many methods to compute tuple embed-

dings. We now discuss vector pairing. Let S and T be the tables of

tuple embedding vectors corresponding to Tables A and B, respec-
tively. We want to quickly search S andT , using a procedureQ(S,T),
to find pairs of similar vectors. To do so, we adapt the major non-DL

blocking approaches, which can be categorized as hash-, sorting-,

similarity-based, composite (e.g., canopy clustering, rule-based),

and schema agnostic. Sort-based and schema agnostic approaches

rely on the symbolic content of the tuples. These approaches do not

work well for embeddings which are multi-dimensional real-valued

vectors that do not have a meaningful lexicographic order for sort-

ing or measuring overlap. Thus, we are left with only hash-based,

similarity-based, and composite approaches.

Hashing-based Pairing: This approach hashes each tuple repre-

sented by an embedding vector and keeps only tuple pairs that

share the same hash value. It can be implemented quite efficiently.

Since the tuple embeddings are numeric vectors, Locality Sensitive

Hashing (LSH) [46] is a good choice which hashes similar items

into the same bucket with high probability. Both DeepER [25] and

AutoBlock [81] use hashing-based pairing.

Similarity-based Pairing: This approach keeps only those tuple

pairs where the tuples are quite similar, based on a similarity mea-

sure such as cosine similarity and Euclidean distance. A natural

choice is to keep only tuple pairs where the similarity score exceeds

a threshold (e.g., 0.7). Another choice is to keep k nearest neigh-

bors (kNN). For example, say we use cosine measure, then for each

tuple ai ∈ A with the tuple embedding uai , we first calculate the
cosine scores between uai and every u ∈ T . Then, we pick k tuples

B′ ⊆ B whose corresponding embeddings vectors have the highest

k cosine similarity scores. Those k pairs (ai ,bj) where bj ∈ B′
will

be included in the candidate set.

Composite Pairing: This approach combines the above ap-

proaches. For example, we may first apply LSH to get a set of hash

buckets, then selecting k pairs with the highest cosine similarity

scores in each bucket.

4 REPRESENTATIVE DL SOLUTIONS
The previous section describes a space of DL solutions for blocking.

Given the large number of these solutions, in this paper we will

evaluate in depth only eight representative solutions, which corre-

spond to DL models of varying complexity. The eight solutions

differ significantly in their choices for the tuple embedding module,

and are named accordingly.

Each of our solutions (except SBERT and Trans-encoder) use
fastText [9], a pre-trained character-level embedding, for the word

embedding module. fastText can handle word morphologies and

out-of-vocabulary words, and is robust to common misspellings. As

such, it is a good choice for the word embedding module, and has

also been used by multiple recent work on DL for EM [25, 55, 81].

Our transformer based solutions, SBERT and Trans-encoder, use
BPE (Byte Pair Encoding), which is also based on sub-word units

such as individual characters. Furthermore, all eight solutions use

top-k cosine similarity for the vector pairing module. This allows

us to cleanly control the desired size of the blocking output (via the

parameter k), a highly desirable property for practical applications.

Table 3 gives a summary of how each component was instantiated.

In the next section we evaluate the above eight solutions in depth.

Table 3: Summary of our proposed solutions.

Solution Instantiation Details
SIF Aggregator: SIF

Seq2seq Encoder/Decoder: LSTM

Autoencoder Aggregator: SIF; Encoder/Decoder: Feed-

Forward network

SBERT Aggregator: BERT

CTT Aggregator: SIF; Summarizer: Siamese net-

work; Classifier: Feed-Forward network

Hybrid Autoencoder + CTT
Trans-encoder Encoder/Decoder: Transformer

CTT-cosine Aggregator: SIF; Summarizer: Siamese net-

work; Classifier: Cosine

5 EMPIRICAL VALUATION

Datasets: We use datasets from a diverse array of domains and

different sizes (see Table 4). All of these datasets except Hospi-

tal, which is a private dataset, are publicly available and have

been used in previous work on EM. For structured EM, we use

6 datasets. For textual EM, we use 3 datasets with 2-3 attributes

that are textual blobs (e.g., title, description). For dirty EM, we fo-

cus on one type of dirtiness, which is widespread in practice [55],

mainly due to information extraction glitches, where attribute val-

ues are ‘injected’ into other attributes (e.g., the value of ‘brand’ is

missing and appears in attribute ‘title’). Textual and dirty datasets

are derived from the corresponding structured datasets. We also

conducted additional experiments on three real-world datasets –

Restaurants [24], Books [24] and Cora [52] that contain real noise

such as misspellings, missing values and incorrect entries.

Methods:We evaluate the eight developed DL solutions, as well

as state-of-the-art existing DL and non-DL solutions. Let C be the

candidate set, i.e., the output of blocking on two tables A and B,
and letG be the set of true matches between A and B (note that we

know G for all datasets that we experimented with). Then recall

is measured as |G ∩C |/|G |, and candidate set size ratio (CSSR) is

measured as |C |/|A×B |. Ideally, we want high recall, low CSSR and

low runtime.

Table 4: Datasets for our experiments.

Type Dataset Table A Table B #Matches #Attr

Structured

Amazon-Google1 1,363 3,226 1,300 4

Walmart-Amazon1 2,554 22,074 1,154 6

DBLP-Google1 2,616 64,263 5,347 4

DBLP-ACM1 2,616 2,294 2,224 4

Hospital1 1,786 1,786 3,949 7

Songs-Songs1 1,000,000 1,000,000 1,292,023 5

Textual

Amazon-Google2 1363 3,226 1,300 2

Walmart-Amazon2 2,554 22,074 1,154 2

Abt-Buy 1,081 1,092 1,097 3

Dirty

DBLP-ACM2 2,616 2,294 2,224 4

Hospital2 1,786 1,786 3,949 7

Songs-Songs2 1,000,000 1,000,000 1,292,023 5

We implemented our solutions in PyTorch, and used a server

with one Intel Xeon E5-2686 CPU, 64 GB RAM, and one NVIDIA

V100 GPU for experiments. We train the DLmodels with mini-batch

gradient descent, and use Adam [40] as the optimization algorithm.

Recall that we use fastText for attribute embedding (except SBERT
and Trans-encoder where we use BPE) and top-K cosine for vector

pairing. We used the well-known FAISS [37] library for top-k cosine

search due to its GPU optimizations.

5.1 Recall and Candidate Set Size
We begin by evaluating the eight DL solutions in terms of recall

and candidate set size. To do so, we plot the R-C (recall-candidate

set size ratio) curve for each solution, to show how these quantities

change as we vary the top-K value in the vector pairing module

(e.g., K = 10 means that each tuple in Table A is paired with 10

tuples in Table B with the highest cosine scores).

Structured Data: Figure 6 compares the R-C curves on six struc-

tured datasets. The x-axis shows the recall while the y-axis shows

the candidate set size ratio (CSSR) for all datasets except Song-Song.

The large size of Song-Song (1M tuples) produces very small values

for CSSR (e.g., for K = 100, the candidate set size is 100M, produc-

ing CSSR = 0.0001, which is too small to show on the plot). So we

report the value of K instead on the y-axis. As K increases, both

recall and candidate set size ratio increase. An R-C curve closer to

the bottom-right corner of the plot indicates a better solution, as

this corresponds to a smaller candidate set and a higher recall.

The plots show that all eight solutions can achieve high re-

call (above 90%) with relatively small candidate sets. Autoencoder
achieves the best performance overall, as its curves are consistently

closest to the bottom-right corner. Surprisingly Hybrid is the best

only for Walmart-Amazon1, despite having the best representation

power among the eight solutions. Our ablation analysis shows that

this is due to the quality of the approximated training data that it

uses. Seq2seq is significantly outperformed by other solutions, in-

cluding SIF for structured and dirty datasets. This is due to tuples in
structured and dirty datasets being relatively short (4-7 attributes).

The number of distinct attribute values in these tables were lim-

ited. Furthermore, the sequential information in structured datasets

(such as manufacturer and price) were non-existent unlike textual

datasets In contrast, the vocabulary size for textual datasets is much

higher where Seq2seq performs much better.

80 85 90 95

Recall

10

20

30

C
S

S
R

Amazon-Google (Structured)

80 85 90 95

Recall

5

10

15

20

C
S

S
R

Walmart-Amazon (Structured)

80 85 90 95

Recall

10

20

C
S

S
R

DBLP-Google (Structured)

80 85 90 95

Recall

5

10

15

20

C
S

S
R

DBLP-ACM (Structured)

80 85 90 95

Recall

20

40

60

C
S

S
R

Hospital-Hospital (Structured)

80 85 90 95

Recall

50

100

150

200

K

Songs-Songs (Structured)

Figure 6: R-C curve comparison of DL solutions for structured datasets.

80 85 90 95

Recall

20

40

60

80

C
S

S
R

Amazon-Google (Textual)

80 85 90 95

Recall

10

20

30

C
S

S
R

Walmart-Amazon (Textual)

80 85 90 95

Recall

20

40

C
S

S
R

Abt-Buy (Textual)

Figure 7: R-C curve comparison of DL solutions for textual datasets.

80 85 90 95

Recall

5

10

15

20

C
S

S
R

DBLP-ACM (Dirty)

80 85 90 95

Recall

20

40

60

C
S

S
R

Hospital-Hospital (Dirty)

80 85 90 95

Recall

50

100

150

200

K

Songs-Songs (Dirty)

Figure 8: R-C curve comparison of DL solutions for synthetically created dirty datasets (same legend as that of Figure 6).

Textual Data: Figure 7 shows the R-C curves on textual datasets.

The performance of the solutions are quite similar, with the R-C

curves close to each other. These R-C curves are further from the

bottom-right corner of each plot than those of structured datasets,

This implies that for datasets with long textual attributes, it is much

more challenging for DLmethods to extract useful information from

each tuple and generate good blocking results. However, as we shall

show later, DL based methods still outperform non-DL methods

for this scenario. The plots show that Hybrid achieves the best

performance on average, suggesting that for textual data, capturing

cross-tuple information helps generate better tuple embeddings.

SBERT also performs quite well. It also uses cross-tuple information

and thus further supports using this information for textual data.

80 85 90 95

Recall

5

10

15

C
S

S
R

Books (Dirty)

80 85 90 95

Recall

5

10

C
S

S
R

Restaurants (Dirty)

80 85 90 95

Recall

5

10

15

C
S

S
R

Cora (Dirty)

Figure 9: R-C curve comparison of DL solutions for real-world dirty datasets. Legend is the same as that of Figure 6

Interestingly, Autoencoder is a close third despite using only the

in-tuple information.

DirtyData: We conducted experiments on two different variants of

dirty datasets. Figure 8 shows the R-C curves on dirty datasets that

were obtained by synthetically corrupting the structured datasets.

Figure 9 shows the results for three datasets, namely Restaurants,

Books and Cora, with real-world noise. Overall, they are quite sim-

ilar to the curves for structured datasets, with Autoencoder being
the best. This is not entirely surprising, because dirtiness in these

datasets means moving some attribute values around, which can de-

grade solutions that exploit sequential information (e.g., Seq2seq),
but has no effect on those that do not (e.g., Autoencoder).

5.2 Runtime
Next we evaluate our solutions in term of runtime. We focus on

the major “time sinks”: the training time for the tuple embedding

module and the time of the vector pairing module.

Training Time for the Tuple Embedding Module: Table 5

shows the training time for each dataset. There is no learning in-

volved for SIF while SBERT uses a pre-trained model. The training

time of Seq2seq is more than an order of magnitude higher than the

time of others. Unfortunately, LSTMs cannot be easily parallelized

due to its sequential nature. The other solutions are quite efficient

and can scale well even for large datasets (e.g., Song-Song with 1M

tuples). Autoencoder which is the best for structured and dirty data

is especially efficient to train.

Runtime of the Vector Pairing Module: We found that the

FAISS [37]-based vector pairing module, that uses GPU acceleration

for fast similarity search required less than a minute to generate

candidate set for K = 100 for all datasets except Song-Song, for

which it required slightly less than 35 minutes.

Evaluating Different Vector Pairing Choices: We have also

performed extensive micro-benchmarks to evaluate vector pairing

choices. We found that in all EM problem types, top-K cosine out-

performs threshold-based cosine, and is much better than LSH. We

have provided additional details in the tech report [1].

5.3 Comparing with Existing DL Solutions
We are aware of three existing DL solutions for blocking: DeepER,
AutoBlock, and DeepBlock. DeepBlock only marginally uses DL (to

improve a non-DL blocking solution) and is described in a 4-page

Table 5: Training time for the tuple embedding module.

Dataset Auto
Encoder

Seq2
Seq CTT Hybrid

Amazon-Google1 1.4m 14.1m 7.3m 8.9m

Walmart-Amazon1 2.4m 50.2m 10.6m 13.7m

DBLP-Google1 4.4m 7.7h 31m 42m

DBLP-ACM1 1.6m 38.1m 8.3m 10.1m

Hospital1 1.1m 9.7m 5.8m 6.3m

Song-Song1 22m 28h 1.8h 3.1h

Amazon-Google2 4.1m 32m 16.2m 20.8m

Walmart-Amazon2 6.4m 1.9h 56m 1.3h

Abt-Buy 3.5m 18.6m 12m 18m

DBLP-ACM2 1.8m 40.6m 8.8m 12.1m

Hospital2 1.4m 10.4m 7.2m 7.5m

Song-Song2 23m 29h 2.1h 2.9h

paper with not enough details to implement.DeepER is consistently

outperformed by our solutions (e.g., SIF). As a result, we compare

our solutions toAutoBlock [81].AutoBlock learns tuple embeddings

using a labeled dataset. For each tuple, it uses LSH to efficiently

retrieve top-K nearest neighbors to form the candidate set. We

implemented AutoBlock using the details provided in the paper,

including identical settings. We used FALCONN [2] to obtain the

nearest neighbor using cross-polytope LSH.

Figure 10 shows the results of comparingAutoBlockwithAutoen-
coder and Hybrid, both of which do not require labeled data. We

repeated each experiment 5 times and reported the average recall.

The curves AB-5, AB-10 and AB-15 shows the results of training

AutoBlock with 5%, 10% and 15% of positive matches. Both Autoen-
coder andHybrid outperform AutoBlock: they achieve higher recall
for a givenK . We also evaluated an AutoBlock variant called AB-Hy
where we trained AutoBlock using the approximate labeled data

generated by Hybrid. This variant’s performance is closer to that

of Hybrid, but is still below those of our two solutions.

5.4 Comparing with Existing Non-DL Solutions
We now compare our solutions with existing state-of-the-art non-

DL solutions. From our perspective, these non-DL solutions fall

into three categories (a) those that require a domain expert to

manually select and tune a blocking method, e.g., deciding what

80 85 90 95

Recall

10

20

30

C
S

S
R

DBLP-Google (Structured)

Algorithm
AutoEncoder

Hybrid

AB-5

AB-10

AB-15

AB-Hy

80 85 90 95

Recall

10

20

30

C
S

S
R

Walmart-Amazon (Textual)

80 85 90 95

Recall

200

400

K

Songs-Songs (Dirty)

Figure 10: Comparison with AutoBlock variants that use different amounts of training data.

Table 6: Comparing with existing state-of-the-art non-DL solutions.

Datasets

DL RBB BSL TB Union (DL,RBB)
K |C| Recall |C| Recall |C| Recall |C| Recall |C| Recall

Amazon-Google1 50 68.2k 97.1 16.3k 88.2 123.2k 78.8 489.8k 83.1 77.7k 98.8

Walmart-Amazon1 20 51.1k 92.2 2.1m 92.0 461k 89.1 3.6m 88.2 2.1m 98.9

DBLP-Google1 150 392.4k 98.1 7.3m 96.9 778.2k 92.1 2.9m 96.7 7.6m 99.6

DBLP-ACM1 5 13.1k 99.6 189.7k 95.5 243k 88.5 466k 94.2 198.4k 99.9

Hospital1 150 140k 99.0 90k 99.3 294k 93.2 389k 96.1 209.8k 99.9

Song-Song1 50 50m 95.0 486.1k 94.7 1.2m 92.9 11.2m 92.6 50m 98.7

Amazon-Google2 20 27.3k 70.5 8.4k 60.2 49k 66.3 86.1k 65.3 33.6k 85.0

Walmart-Amazon2 5 12.8k 68.7 7.9m 64.2 86k 58.0 212k 62.6 7.9m 83.0

Abt-Buy 20 21.6k 87.2 28.3k 82.9 43.2k 82.1 289k 81.9 44.6k 95.7

Amazon-Google3 50 68.2k 97.1 320.5k 87.3 730.1k 90.3 3.2m 89.6 360.0k 99.3

Walmart-Amazon3 10 25.5k 88.0 924.3k 87.0 644.1k 86.1 4.4m 84.3 935.9k 97.9

DBLP-Google2 150 392.4k 98.1 47.5m 97.2 1.89m 88.2 8.87m 93.7 47.6m 99.8

DBLP-ACM2 5 13.1k 99.6 991.7k 98.7 2.2m 93.2 3.7m 91.1 1.0m 99.8

Hospital2 10 8.3k 89.0 133.9k 88.4 289k 81.0 569k 79.8 136.8k 98.5

Song-Song2 50 50m 95.0 5.1m 81.9 8.6m 74.4 23.89m 79.7 50m 95.2

kind of hashing to perform on which attributes, (b) unsupervised

schema-agnostic approaches, and (c) approaches that learn a blocker

from labeled data. As it is challenging to quantitatively compare our

solutions with approaches that require manual domain expert effort

in (a), we focus on (b) and (c). We choose TB [61] (token blocking) as

a representative approach for (b). Based on the recent survey [66],

we identify BS [53] (blocking scheme learner) as state-of-the-art

approach for (c). They have been shown to achieve good results for

diverse datasets [59, 66]. We also compare our solutions to RBB, a

state-of-the-art industrial solution that uses labeled data to learn a

blocker. In our experiments, we ensure that both BSL and RBB use

the same amount of labeled data.

Evaluation Method: It is extremely difficult to vary the parame-

ters of the non-DL solutions (TB, BSL, and RBB) in such a way that

can generate meaningful recall-candidate set size ratio curves. As a

result, we turn our DL solutions into “point” solutions, so that we

can compare them to the non-DL solutions. Specifically, we first se-

lect the best DL solution, namely Autoencoder for structured/dirty
data and Hybrid for textual data, and then focus on finding a good

K value. To do so, we vary K and run DL blocking to generate

a candidate set CK . Then we apply MatchCatcher [47] to CK to

identify the 200 most similar pairs that are not in CK . If we find
more than 10 true matches among these pairs, then we conclude

that K is too small to achieve good recall. So we increase K and

repeat the previous steps. Otherwise, we stop. Column 2 of Table 6

shows the K value we found for each dataset. Note that the above

procedure, perhaps with some minor modifications, can be used in

practice to find a good value of K for our DL solutions.

Comparison Results: Table 6 shows the recall and candidate set

size for our best DL method (Autoencoder or Hybrid, shown as

“DL” in the table), RBB, BSL, and TB, respectively (ignoring the

last column “Union (DL, RBB)” for now). The results show that

RBB outperforms both the learned-blocker solution BSL and the

unsupervised solution TB, in terms of recall and candidate set size.

So we focus on comparing our solution with RBB. Our solution

achieves higher recall than RBB for all (highlighted in red font) but

one dataset. This outperformance is especially stark for textual and

dirty datasets, presumably because DL techniques can work better

on these datasets. For structured data, our solution outperforms

RBB on the first four datasets, with higher recall and smaller can-

didate set. However, for Hospital1 and Song-Song1, the recalls are

comparable, but the size of the candidate set generated by DL is

much larger than the one generated by RBB, especially for Song-

Song1. Given these divergent results, it is not clear whether DL will

consistently outperform RBB on structured datasets.

5.5 Combining DL and Non-DL Solutions
We found that DL and non-DL solutions learn “concepts” that are

highly overlapping but not quite the same. As a result, we conjec-

tured that combining them can significantly increase recall while

only minimally to moderately increase the candidate set size. A

tuple pair (ti , tj) will be passed to the downstream entity matcher

if at least one of DL or RBB considers the pair to be a possible

match. The last two columns, under “Union (DL,RBB)”, of Table 6

shows the candidate set size and recall when we union the output of

our DL method and RBB. We see that recall increases significantly

(values in blue font) by 0.3-6.7% absolute recall improvement on

structured datasets, 8.5-14.5% on textual datasets, and 0.2-9.9% on

dirty datasets. The candidate set size increases by up to 49.9%, 57.6%,

and 12.3% on structured, textual, and dirty datasets, respectively.

But in most cases, the actual size increase is minimal.

5.6 Ablation Analysis
We also conducted additional experiments to validate the various

design choices of DeepBlocker. We only summarize the key ob-

servations here and refer the reader to [1] for additional details.

1. Sequential vs Joint Training ofHybrid. Currently,Hybrid uses a se-
quential approach where the aggregatorM1 is trained first followed

by that of summarizerM2. We found that this outperforms the al-

ternative where bothM1 andM2 are trained jointly. Intuitively, the

joint training focuses bothM1 andM2 on cross-tuple information

that produces worst embeddings for in-tuple information.

2. Integrating Attribute Information in Embedding. Our DL models

construct a single string by concatenating all the attribute value,

which would lead to the loss of information about attribute bound-

aries. Prior work such as Seq2SeqMatcher [57] found that incorpo-

rating attribute information is beneficial for matching tuples. By

following the same annotation process as [57], for example, tuple

a1 from Figure 1 is encoded as [Name Daniel] [Name Smith] [City

LA] [Age 18], we found that the annotation information was not

beneficial for blocking where the schema is homogeneous and at-

tributes involved in blocking are aligned. We leave the evaluation

of other types of tuple serialization [13, 48] for future work.

3. Making Autoencoder and CTT Sequence-Aware. We use SIF for

aggregating word embeddings to tuple embeddings in both Au-
toencoder and CTT. We experimented with replacing SIF with a

sequence-aware model such as LSTM in Autoencoder and CTT.
This provided a minor improvement in textual datasets that can

benefit from sequence modeling. While training of Autoencoder
using SIF took 3.5 minutes for Abt-Buy, the LSTM variant took as

much as 12.4 minutes. Given the negligible improvement in the

recall, we believe that it suffices to train using SIF.

4. Evaluating Variants of CTT. By default, CTT takes a pair of tuples

ti and tj and passes the difference of their tuple embeddings to the

classifier. This approach is widely used in prior work including [25,

55]. An alternative is to concatenate the embeddings of ti and tj
and pass it to the classifier. The concatenation approach slightly

out-performsCTT due to the higher number of model parameters in

the input layer of the classifier. This also requires a larger training

data and the consequent higher training cost.

6 RELATEDWORK
Section 2 briefly reviews existing non-DL and DL based blocking

approaches. An overview of EM can be found in surveys such

as [18, 27, 56, 62]. A recent survey [5] specifically focused on the

application of DL models for EM. There are also a number of sur-

veys that cover different aspects of blocking [16, 60, 66]. There

has been multiple efforts on building scalable EM systems such as

Magellan [43], JedAI [64, 67], and CloudMatcher [32].

Recently, a number of approaches have applied transformer

based pre-trained language models to EM [13, 48, 49, 68] achieving

state-of-the-art results. There has been some effort on reducing

the amount of labeled data needed to train DL models using trans-

fer learning [38, 50, 75, 79, 82] and data augmentation [48] with

promising results. There has also been some attempt on learn-

ing relational embeddings that are targeted towards structured

data [10, 11, 14, 33, 44, 76]. These efforts are orthogonal to our

work and can be used as a choice for the word embedding module.

MatchCatcher [47] proposed a debugger for blocking that can

identify the matches that were ignored by the blocker and use them

to improve the blocker’s accuracy. There has been extensive work

on scaling blocking techniques to single machine and cluster of

machines [12, 19, 26, 42]. There has been some effort [8, 20, 53] on

learning blocking predicates by leveraging labeled data consisting of

matches and non-matches. An empirical comparison of the blocking

methods can be found in [6, 59, 74]. Works such as [4, 35] extend the

averaging and LSTM based blocking proposed in DeepER while [28,

29] propose a progressive approach for blocking.

7 CONCLUSION & FUTUREWORK
In this paper we have significantly advanced the state of the art in

applying DL to the blocking step of EM, by defining a large space

of DL solutions, developing eight representative solutions in this

space, and evaluating these solutions.

Our findings has several implications for researchers and prac-

titioners. First, Autoencoder appears to be a highly promising DL

solution. It is relatively simple to implement, fast, yet effective. If

the data is highly textual, then perhaps extending Autoencoder
with cross-tuple training, i.e., using the Hybrid solution, would im-

prove recall, at the cost of longer runtime. Second, using synthetic

labeled data appears to work quite well, and should be investigated

further. In the same vein, other types of self supervision should be

examined, to see if they can benefit blocking. Third, combining DL

and non-DL solutions appears to be a highly promising research di-

rection. In this paper we have examined a simple union to combine

the two solutions. One could possibly design better combination

methods. Finally, we should investigate other ways to inject domain

knowledge into the blocking process, such as the importance of the

individual attributes for blocking.

ACKNOWLEDGMENTS
We thank the reviewers for their invaluable feedback. The last

author was supported by UW-Madison UW-2020 grant, NSF grant

IIS-1564282, and gifts from Informatica, Google, and American

Family Insurance.

REFERENCES
[1] [n.d.]. Tech Report for DeepBlocker. https://www.dropbox.com/s/

yirgfecdcyr6aep/DeepBlockerTechReport.pdf?dl=0.

[2] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn, and Ludwig

Schmidt. 2015. Practical and optimal LSH for angular distance. In Advances in
Neural Information Processing Systems (NIPS 2015). 1225–1233.

[3] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A Simple but Tough-to-Beat

Baseline for Sentence Embeddings. In ICLR.
[4] Fabio Azzalini, Songle Jin, Marco Renzi, and Letizia Tanca. 2020. Blocking

Techniques for Entity Linkage: A Semantics-Based Approach. Data Science and
Engineering (2020), 1–19.

[5] Nils Barlaug and Jon Atle Gulla. 2020. Neural networks for entity matching.

arXiv preprint arXiv:2010.11075 (2020).
[6] R Baxter, P Christen, and T Churches. [n.d.]. A Comparison of Fast Blocking

Methods for Record Linkage; erschienen in: Proceedings of the Workshop on

Data Cleaning, Record Linkage and Object Consolidation at the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining;

Washington DC; 2003; o.

[7] Aurélien Bellet, Amaury Habrard, and Marc Sebban. 2013. A survey on metric

learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709
(2013).

[8] Mikhail Bilenko, Beena Kamath, and Raymond JMooney. 2006. Adaptive blocking:

Learning to scale up record linkage. In Sixth International Conference on Data
Mining (ICDM’06). IEEE, 87–96.

[9] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. 2017.

Enriching Word Vectors with Subword Information. Trans. Assoc. Comput. Lin-
guistics 5 (2017), 135–146.

[10] Rajesh Bordawekar and Oded Shmueli. 2017. Using word embedding to enable

semantic queries in relational databases. In DEEM Workshop. ACM, 5.

[11] Rajesh Bordawekar and Oded Shmueli. 2019. Exploiting Latent Information

in Relational Databases via Word Embedding and Application to Degrees of

Disclosure.. In CIDR.
[12] Andrew Borthwick, Stephen Ash, Bin Pang, Shehzad Qureshi, and Timothy Jones.

2020. Scalable Blocking for Very Large Databases. arXiv preprint arXiv:2008.08285
(2020).

[13] Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer

architectures-a step forward in data integration. In EDBT.
[14] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.

Creating embeddings of heterogeneous relational datasets for data integration

tasks. In SIGMOD. 1335–1349.
[15] Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. 2010. Large scale

online learning of image similarity through ranking. (2010).

[16] Peter Christen. 2011. A survey of indexing techniques for scalable record linkage

and deduplication. IEEE transactions on knowledge and data engineering 24, 9

(2011), 1537–1555.

[17] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer.

[18] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,

and Kostas Stefanidis. 2020. An overview of end-to-end entity resolution for big

data. ACM Computing Surveys (CSUR) 53, 6 (2020), 1–42.
[19] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh

Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon

Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to

Build Cloud Services. In SIGMOD.
[20] Anish Das Sarma, Ankur Jain, Ashwin Machanavajjhala, and Philip Bohannon.

2012. An automatic blocking mechanism for large-scale de-duplication tasks. In

Proceedings of the 21st ACM international conference on Information and knowledge
management. 1055–1064.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[22] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. 2012. Principles of Data
Integration. Morgan Kaufmann.

[23] Carl Doersch, Abhinav Gupta, and Alexei A Efros. 2015. Unsupervised visual rep-

resentation learning by context prediction. In Proceedings of the IEEE international
conference on computer vision. 1422–1430.

[24] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. 2009. Truth discovery

and copying detection in a dynamic world. Proceedings of the VLDB Endowment
2, 1 (2009), 562–573.

[25] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad

Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity

resolution. PVLDB 11, 11 (2018), 1454–1467.

[26] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,

and Themis Palpanas. 2015. Parallel meta-blocking: Realizing scalable entity

resolution over large, heterogeneous data. In 2015 IEEE International Conference
on Big Data (Big Data). IEEE, 411–420.

[27] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.

Duplicate Record Detection: A Survey. TKDE 19, 1 (2007).

[28] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2021.

BEER: Blocking for Effective Entity Resolution. In Proceedings of the 2021 Inter-
national Conference on Management of Data. 2711–2715.

[29] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2021.

Efficient and effective er with progressive blocking. The VLDB Journal (2021),
1–21.

[30] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan

Rampalli, Jude W. Shavlik, and Xiaojin Zhu. 2014. Corleone: hands-off crowd-

sourcing for entity matching. In SIGMOD.
[31] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.

MIT Press.

[32] Yash Govind, Erik Paulson, Palaniappan Nagarajan, Paul Suganthan G. C., AnHai

Doan, Youngchoon Park, Glenn Fung, Devin Conathan, Marshall Carter, and

Mingju Sun. 2018. CloudMatcher: A Hands-Off Cloud/Crowd Service for Entity

Matching. Proc. VLDB Endow. 11, 12 (2018), 2042–2045. https://doi.org/10.14778/

3229863.3236255

[33] Michael Günther. 2018. FREDDY: Fast Word Embeddings in Database Systems.

In SIGMOD. ACM, 1817–1819.

[34] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[35] Delaram Javdani, Hossein Rahmani, Milad Allahgholi, and Fatemeh Karimkhani.

2019. DeepBlock: A Novel Blocking Approach for Entity Resolution using Deep

Learning. In ICWR. IEEE, 41–44.
[36] Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning

with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020).

[37] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with gpus. IEEE Transactions on Big Data (2019).
[38] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.

Low-resource Deep Entity Resolution with Transfer and Active Learning. In ACL.
5851–5861.

[39] Yoon Kim, Yacine Jernite, David A. Sontag, and Alexander M. Rush. 2015.

Character-Aware Neural Language Models. CoRR abs/1508.06615 (2015).

[40] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR.
[41] Diederik P. Kingma and Max Welling. 2019. An Introduction to Variational

Autoencoders. Found. Trends Mach. Learn. 12, 4 (2019), 307–392.
[42] Lars Kolb, Andreas Thor, and Erhard Rahm. 2011. Parallel sorted neighborhood

blocking with MapeReduce. Datenbanksysteme für Business, Technologie und Web
(BTW) (2011).

[43] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,

Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al.

2016. Magellan: Toward building entity matching management systems. PVLDB
9, 13 (2016), 1581–1584.

[44] Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, and Christoph Lofi.

2020. REMA: Graph Embeddings-based Relational Schema Matching. SEA Data
workshop (2020).

[45] Brian Kulis et al. 2012. Metric learning: A survey. Foundations and trends in
machine learning 5, 4 (2012), 287–364.

[46] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of Massive
Datasets, 2nd Ed. Cambridge University Press.

[47] Han Li, Pradap Konda, Paul Suganthan GC, AnHai Doan, Benjamin Snyder,

Youngchoon Park, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2018.

MatchCatcher: A Debugger for Blocking in Entity Matching.. In EDBT. 193–204.
[48] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.

2020. Deep entity matching with pre-trained language models. PVLDB 14, 1

(2020), 50–60.

[49] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and Wang-

Chiew Tan. 2021. Deep Entity Matching: Challenges and Opportunities. Journal
of Data and Information Quality (JDIQ) 13, 1 (2021), 1–17.

[50] Michael Loster, Ioannis Koumarelas, and Felix Naumann. 2021. Knowledge

Transfer for Entity Resolution with Siamese Neural Networks. Journal of Data
and Information Quality (JDIQ) 13, 1 (2021), 1–25.

[51] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. 2000. Efficient clustering

of high-dimensional data sets with application to reference matching. In SIGKDD.
169–178.

[52] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

2000. Automating the construction of internet portals with machine learning.

Information Retrieval 3, 2 (2000), 127–163.
[53] Matthew Michelson and Craig A. Knoblock. 2006. Learning Blocking Schemes

for Record Linkage. In AAAI. 440–445.
[54] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

2013. Distributed Representations of Words and Phrases and their Composition-

ality. In NeruIPS. 3111–3119.
[55] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.

https://www.dropbox.com/s/yirgfecdcyr6aep/DeepBlockerTechReport.pdf?dl=0
https://www.dropbox.com/s/yirgfecdcyr6aep/DeepBlockerTechReport.pdf?dl=0
https://doi.org/10.14778/3229863.3236255
https://doi.org/10.14778/3229863.3236255

Deep learning for entity matching: A design space exploration. In SIGMOD.
[56] Felix Naumann and Melanie Herschel. 2010. An introduction to duplicate detec-

tion. Synthesis Lectures on Data Management 2, 1 (2010), 1–87.
[57] Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and

Hao Kong. 2019. Deep sequence-to-sequence entity matching for heterogeneous

entity resolution. In CIKM. 629–638.

[58] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[59] Kevin O’Hare, Anna Jurek, and Cassio de Campos. 2018. A new technique of

selecting an optimal blocking method for better record linkage. Information
Systems 77 (2018), 151–166.

[60] Kevin O’Hare, Anna Jurek-Loughrey, and Cassio de Campos. 2019. A review of

unsupervised and semi-supervised blocking methods for record linkage. Linking
and Mining Heterogeneous and Multi-view Data (2019), 79–105.

[61] George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter Fankhauser.

2011. Efficient entity resolution for large heterogeneous information spaces. In

WSDM. 535–544.

[62] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.

2021. The Four Generations of Entity Resolution. Synthesis Lectures on Data
Management 16, 2 (2021), 1–170.

[63] George Papadakis, Georgia Koutrika, Themis Palpanas, andWolfgang Nejdl. 2013.

Meta-blocking: Taking entity resolutionto the next level. IEEE Transactions on
Knowledge and Data Engineering 26, 8 (2013), 1946–1960.

[64] George Papadakis, George Mandilaras, Luca Gagliardelli, Giovanni Simonini, Em-

manouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Palpanas,

and Manolis Koubarakis. 2020. Three-dimensional Entity Resolution with JedAI.

Information Systems 93 (2020), 101565.
[65] George Papadakis, George Papastefanatos, Themis Palpanas, and Manolis

Koubarakis. 2016. Scaling entity resolution to large, heterogeneous data with

enhanced meta-blocking.. In EDBT. 221–232.
[66] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.

2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1–42.

[67] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, Nikiforos Pittaras,

Giovanni Simonini, Dimitrios Skoutas, Paul Isaris, George Giannakopoulos,

Themis Palpanas, and Manolis Koubarakis. 2020. JedAI3: beyond batch, blocking-

based Entity Resolution.. In EDBT. 603–606.
[68] Ralph Peeters, Christian Bizer, and Goran Glavaš. 2020. Intermediate training of

BERT for product matching. 745, 722 (2020), 2–112.

[69] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors for Word Representation. In EMNLP. ACL, 1532–1543.
[70] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. Association for Computational Linguistics (2019).
[71] Giovanni Simonini, Sonia Bergamaschi, and HV Jagadish. 2016. BLAST: a loosely

schema-aware meta-blocking approach for entity resolution. Proceedings of the
VLDB Endowment 9, 12 (2016), 1173–1184.

[72] Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi.

2019. Schema-Agnostic Progressive Entity Resolution. IEEE Trans. Knowl. Data
Eng. 31, 6 (2019), 1208–1221.

[73] Kostas Stefanidis, Vasilis Efthymiou,Melanie Herschel, and Vassilis Christophides.

2014. Entity resolution in the web of data. In WWW. 203–204.

[74] Rebecca C Steorts, Samuel L Ventura, Mauricio Sadinle, and Stephen E Fienberg.

2014. A comparison of blocking methods for record linkage. In International
conference on privacy in statistical databases. Springer, 253–268.

[75] Saravanan Thirumuruganathan, Shameem A Puthiya Parambath, Mourad Ouz-

zani, Nan Tang, and Shafiq Joty. 2018. Reuse and adaptation for entity resolution

through transfer learning. arXiv preprint arXiv:1809.11084 (2018).
[76] Saravanan Thirumuruganathan, Nan Tang, Mourad Ouzzani, and AnHai Doan.

2020. Data curation with Deep Learning. EDBT (2020).

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NeurIPS. 5998–6008.
[78] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. 2010. Stacked Denoising Autoencoders: Learning Useful

Representations in a Deep Network with a Local Denoising Criterion. J. Mach.
Learn. Res. 11 (2010), 3371–3408.

[79] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-

ruganathan. 2020. Zeroer: Entity resolution using zero labeled examples. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1149–1164.

[80] Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. 2016. String similarity

search and join: a survey. Frontiers of Computer Science 10, 3 (01 Jun 2016),

399–417.

[81] Wei Zhang, Hao Wei, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos,

and Davd Page. 2020. AutoBlock: A hands-off blocking framework for entity

matching. In WSDM. 744–752.

[82] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching

using Pre-trained Deep Models and Transfer Learning. In WWW. 2413–2424.

	Abstract
	1 Introduction
	2 Preliminaries
	3 A Design Space of DL Solutions
	3.1 Architecture Template & Design Space
	3.2 Word Embedding Choices
	3.3 Tuple Embedding Choices
	3.4 Self-Reproduction Methods
	3.5 Cross-Tuple Training Methods
	3.6 Triplet Loss Minimization Methods
	3.7 Hybrid Methods
	3.8 Vector Pairing Choices

	4 Representative DL Solutions
	5 Empirical valuation
	5.1 Recall and Candidate Set Size
	5.2 Runtime
	5.3 Comparing with Existing DL Solutions
	5.4 Comparing with Existing Non-DL Solutions
	5.5 Combining DL and Non-DL Solutions
	5.6 Ablation Analysis

	6 Related Work
	7 Conclusion & Future Work
	Acknowledgments
	References

