
Synthesizing Privacy Preserving Entity Resolution
Datasets

Xuedi Qin1, Chengliang Chai1∗, Nan Tang2, Jian Li1, Yuyu Luo1, Guoliang Li1∗, Yaoyu Zhu1
1Department of Computer Science, Tsinghua University 2QCRI, HBKU

{qxd17@mails., ccl@mail., lijian83@mail., luoyy18@mails., liguoliang@, zyy18@mails.}tsinghua.edu.cn, ntang@hbku.edu.qa

Abstract—Entity resolution (ER) is a core problem in data
integration. Many companies have lots of datasets where ER
needs to be conducted to integrate the data. On the one hand,
it is nontrivial for non-ER experts within companies to design
ER solutions. On the other hand, most companies are reluctant
to release their real datasets for multiple reasons (e.g., privacy
issues). A typical solution from the machine learning (ML) and
the statistical community is to create surrogate (a.k.a. analogous)
datasets based on the real dataset, release these surrogate datasets
to the public to train ML models, such that these models trained
on surrogate datasets can be either directly used or be adapted
for the real dataset by the companies.

In this paper, we study a new problem of synthesizing
surrogate ER datasets using transformer models, with the goal
that the ER model trained on the synthesized dataset can be
used directly on the real dataset. We propose privacy preserving
methods to synthesize ER datasets: we first learn the true
similarity distributions of both matching and non-matching entity
pairs from real dataset. We then devise algorithms that satisfy
differential privacy and can synthesize fake but semantically
meaningful entities, add matching and non-matching labels to
these fake entity pairs, and ensure that the fake and real datasets
have similar distributions. We also describe a method for entity
rejection to avoid synthesizing bad fake entities that may destroy
the original distributions. Extensive experiments show that ER
matchers trained on real and synthetic ER datasets have very
close performance on the same test sets – their F1 scores differ
within 6% on 3 commonly used ER datasets, and their average
precision, recall differences are less than 5%.

Index Terms—Data Synthesis, Entity Resolution

I. INTRODUCTION

Entity resolution (ER) is a fundamental problem of data
integration [1], [2], [3], [4]. Although there are plenty of real-
world ER datasets within many companies, most companies
are reluctant to release them to the public for many different
reasons (e.g., privacy issues). A common strategy for com-
panies to share their datasets is through publishing surrogate
datasets [5], [6], [7], [8] that are analogous to the real datasets.
One practical goal is that the machine learning (ML) models
trained on surrogate datasets can be either directly used or be
adapted for the real dataset.

Analogously, if we can synthesize surrogate ER datasets
Esyn that resemble the real ER datasets Ereal and are purely
fake, it is easier to convince the companies to release these
surrogate ER datasets. This will benefit both ER researchers

∗ Guoliang Li and Chengliang Chai are the corresponding authors.

where they can get more data to study ER models and data
owners where they can get more effective models.

Desiderata of Synthesized ER Datasets. We consider each
ER dataset E with three parts (D,M,N), where D contains
entities, and M and N are annotated labels of matching and
non-matching entity pairs. Next, let’s discuss the desiderata
of a synthesized ER dataset Esyn = (Dsyn,Msyn, Nsyn) w.r.t. a
real one Ereal = (Dreal,Mreal, Nreal).

1) Indistinguishable entities: Given an entity e, one cannot
tell that whether e is from Dreal or Dsyn.

2) Performance preservation: For an ER model (or a
“matcher”) M (e.g., a random forest [9] or a deep neural
network [10], [11]), the matcher Mreal trained on Ereal

and the matcher Msyn trained on Esyn should have similar
test performance (e.g., precision and recall) on the same
test set T, i.e., Msyn(T) ≈Mreal(T).

3) Privacy preserving: The synthesized ER dataset Esyn

should not leak privacy w.r.t. real entities of Ereal.

Challenges. There are two main challenges.

(C1) Entity level similarity. We need to synthesize meaningful
entities that contain a mix of attribute types, such as numeric,
categorical, and textual attributes (e.g., paper title).

(C2) Entity pair level similarity. In order to achieve our goal
Msyn(T) ≈ Mreal(T), we need to further ensure that the
distribution between entity pairs, which models the similarity
vectors between matching and non-matching entity pairs,
should resemble that of Ereal.

Contributions. We propose methods for synthesizing ER
datasets. We first learn the distribution of Ereal based on the
similarity vectors of matching and non-matching entity pairs,
from which we then sample similarity vectors and synthesize
entity pairs based on the sampled similarity vectors.

We summarize our contributions as follows:
1) We define a new problem of synthesizing ER datasets

and propose a novel framework to solve this problem
(Section II).

2) We devise algorithms for synthesizing fake entities that
resemble real entities (i.e., entity level), as well as entity
pairs that satisfy the similarity vectors sampled from Ereal

(Sections IV & VI).
3) We further design an entity rejection method, in order to

reject the synthesized entities that either look unreal (i.e.,

entity level) or may destroy the distribution (i.e., entity
pair level) that Esyn should follow (Section V).

4) We devise privacy preserving methods to synthesize ER
datasets so that the privacy of real datasets will not be
leaked: we train transformer models differential privately
(Section VI).

5) We conduct extensive experiments on synthesized ER
datasets based on 3 commonly used ER datasets. The
experimental results show that the matchers Msyn trained
on Esyn and Mreal trained on Ereal have very close per-
formance when being validated on the same test set: the
differences of their F1 scores are within 6% (Section VII).

Novelty. There are several related works that are close to this
work, but they cannot be used to synthesize surrogate ER
datasets which resemble real ones in both entity and entity
pair levels. (1) ZeroER [12] is designed to find the matching
pairs by guessing the matching and non-matching distributions
of Ereal without any labels being provided, and it cannot
synthesize ER datasets; (2) EMBench [13], [14] synthesizes
new entities by modifying the entities in Ereal. They do not
require the new entity pairs hold the same distribution with real
ones and do not ensure privacy; (3) GAN based works [15],
[16], [17], [18] can only synthesize one table. They train GAN
models to learn the distribution of the real table, and synthesize
a fake table by the generator of GAN. Although they can be
used to synthesize relational tables of the ER dataset one by
one, they cannot guarantee the similarity vector distribution
between the synthesized tables is the same as real ones because
each table of the ER dataset is synthesized independently.

II. PRELIMINARY AND PROBLEM DEFINITION

A. (Synthesized) ER Datasets

ER Datasets. Let A and B be two relations and a ∈ A, b ∈ B
denote two entities. It is known that some entities are common
(i.e., matches) to A and B. The set of pairs:

A×B = {(a, b) | a ∈ A, b ∈ B}

is the union of two disjoint sets:

M = {(a, b) | a = b, a ∈ A, b ∈ B}, and

N = {(a, b) | a ̸= b, a ∈ A, b ∈ B}

which we call matching and non-matching sets, respectively.
Let E = (A,B,M,N) denote an ER dataset, where every en-
tity pair between A and B is labeled as either matching or non-
matching. We also write D = (A,B) and E = (D,M,N).

Each entity contains a number of attributes (e.g., name,
age, gender, marital status, address, DOB, etc). Typically, we
assume that there is a one-to-one attribute correspondence (or
mapped schemas) from an A-entity to a B-entity [9], [12], but
the attribute names can be different (e.g., gender and sex).

Example 1: Figure 1 shows a sample ER dataset. Figure 1(a)
is an excerpt of DBLP relation (A-relation) and Figure 1(b) is
an excerpt of ACM relation (B-relation). DBLP and ACM
have the same attributes, where id is used to identify an

id title authors venue year

a1
Adaptable Query Optimization and
Evaluation in Temporal Middleware

Christian S. Jensen, Richard T.
Snodgrass, Giedrius Slivinskas

SIGMOD
Conference 2001

a2
Generalised Hash Teams for

Join and Group-by
Donald Kossmann, Alfons Kemper,

Christian Wiesner VLDB 1999

a3
A simple algorithm for finding frequent

elements in streams and bags
Scott Shenker, Christos H.

Papadimitriou, Richard M. Karp
ACM Trans.

Database Syst. 2003

(a) An excerpt of DBLP.
id title authors venue year

b1
Adaptable query optimization and
evaluation in temporal middleware

Giedrius Slivinskas, Christian S.
Jensen, Richard Thomas Snodgrass

International Conference
on Management of Data 2001

b2
Generalised Hash Teams for Join

and Group-by
Alfons Kemper, Donald Kossmann,

Christian Wiesner Very Large Data Bases 1999

b3
Parameterized complexity for

the database theorist Martin Grohe ACM SIGMOD Record 2002

(b) An excerpt of ACM.
x entity pair sim title sim authors sim venue sim year

x+
1 (a1, b1) 1.0 0.72 0.16 1.0

X+

x+
2 (a2, b2) 1.0 0.86 0.04 1.0

x−
1 (a1, b2) 0.07 0.08 0.0 0.8

x−
2 (a1, b3) 0.01 0.0 0.15 0.9

x−
3 (a2, b1) 0.07 0.10 0.0 0.8X−

...
(c) Matching similarity vectors X+ and non-matching similarity vectors
X− on (a) and (b).

Fig. 1. An ER dataset with two tables: (a) DBLP and (b) ACM. (c) The
matching similarity vectors X+ and non-matching similarity vectors X−.

entity, and the matching entities are marked in the same
color. There are 2 matching pairs: (a1, b1) and (a2, b2), i.e.,
M = {(a1, b1), (a2, b2)}, and 3 × 3 − 2 = 7 non-matching
pairs, i.e., N = {(a1, b2), (a1, b3), (a2, b1), ...}. 2

Synthesized ER Datasets. A synthesized ER dataset Esyn =
(Asyn, Bsyn,Msyn, Nsyn) is just an ER dataset, but with every-
thing being synthesized, including entities in Asyn and Bsyn

and the matching and non-matching labels in Msyn and Nsyn.
Essentially, an ER model is to learn the distributions of

matching and non-matching entity pairs. So if we can synthe-
size a dataset Esyn whose distributions of matching and non-
matching pairs resemble those of Ereal, the ER model learned
from Esyn will be similar to the one learned from Ereal [15],
[17]. Hence, the distributions of matching and non-matching
entity pairs of Ereal are crucial for synthesizing ER datasets.

B. Matching and Non-matching Distributions

A convenient way of modeling the distributions of entity
pairs is to represent each entity pair as a similarity vector
(a.k.a. feature vector) and model these similarity vectors [12],
[19], [9], [20].

Similarity Vector of An Entity Pair. Let {C1, C2, ..., Cl} be
the aligned schema between A and B. Let {f1, f2, ..., fl} be
the corresponding similarity functions. Given an entity pair
(a, b), the similarity vector x(a,b) of (a, b) is:

x(a,b) = (fi(a[Ci], b[Ci]) | 1 ≤ i ≤ l)

Example 2: Figure 1(c) shows sample similarity vectors. The
similarity functions of columns title, authors, venue are 3-
gram jaccard similarity, and the similarity function of column
year is f(year1, year2) = 1 − |year1−year2|

max (year)−min (year) , where
max (year) and min (year) are the maximum and minimum
values of column year, and the max (year)−min (year) =
10. For example, the venue similarity of pair (a1, b1) is
3 gram jaccard(“SIGMOD Conference”, “Internati

2

onal Conference on Management of Data”) =
0.16, and the year similarity of pair (a1, b1) is
1− |2001− 2001|/10 = 1. Hence, x+

1 = (1.0, 0.72, 0.16, 1.0)
is the similarity vector of (a1, b1). The similarity vectors of
other entity pairs are computed similarly. 2

Similarity Vectors of Matching/Non-matching Entity Pairs.
In E = (A,B,M,N), an entity pair (a, b) is either a matching
pair in M , or a non-matching pair in N . So the similarity
vectors of all entity pairs in E can be categorized as:

X+ = {x(a,b) | (a, b) ∈M}
X− = {x(a,b) | (a, b) ∈ N}

where X+ (resp. X−) is the set of all similarity vectors for
matching (resp. non-matching) pairs. For simplicity, we write
x(a,b) as x when it is clear from the context.

Example 3: Figure 1(c) shows two matching similarity vectors
of (a1, b1), (a2, b2) in X+, and seven non-matching similarity
vectors of (a1, b2), (a1, b3), (a2, b1), ... in X−. 2

Matching and Non-matching Distributions. As observed
by [12], the similarity vectors for matching pairs should
look different from those of non-matching pairs. That is,
if an entity pair is a match, their similarity vector should
follow a matching distribution, namely the M-distribution;
otherwise, the similarity vectors of non-matching pairs should
follow a different non-matching distribution, namely the N -
distribution. In fact, M- and N -distributions are true but
unknown distributions, and X+ and X− are samples and are
subject to these two distributions, respectively. Moreover, the
M- and N -distributions together form the overall mixture
distribution of all similarity vectors, denoted byO-distribution.

Let the probability density function (PDF) of M/N -
distribution be pm(x)/pn(x), where x is the similarity vector
variable. Let the probability of matching be π = |X+|

|X+|+|X−| .
The PDF of O-distribution is represented as:

p(x) = πpm(x) + (1− π)pn(x).

Please refer to Figure 3(c) for M- and N -distributions.

C. Differential Privacy

Differential privacy (DP) [21], [22] provides strong privacy
guarantees for sharing information of datasets. Intuitively, an
algorithm is differentially private if the attacker cannot tell
the computation results of the algorithm on two adjacent
datasets. Two datasets are adjacent if they only differ in one
individual information. So attackers cannot identify individual
information of the shared data if the algorithm for data sharing
is differentially private. A randomized algorithm A satisfies
(ϵ, δ)-differential privacy if for any computation range S of
A, and for any two adjacent datasets D and D′, we have:

Pr[A(D) ∈ S] ≤ eϵPr[A(D′) ∈ S] + δ (1)

where ϵ and δ measure the privacy level of A: The smaller ϵ
and δ are, the higher the degree of privacy preserving is.

Similarity
Vectors

Distributions of
Similarity Vectors

Synthesizer

Synthesizing Entity Resolution Benchmarks

ABSTRACT
XXX
ACM Reference Format:
. 2021. Synthesizing Entity Resolution Benchmarks. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
http://vldb.org/pvldb/format_vol14.html.

1 INTRODUCTION
Entity resolution (ER) – the problem of �nding records that refer
to the same real-world object – is a fundamental problem of data
management [7]. It was �rst introduced (named as record linkage)
by Dunn in 1946 [6]. Its probabilistic foundation was laid by New-
combe et al. in 1959 [14], and was formalized by Fellegi and Sunter
in 1969 [8] and the Fellegi-Sunter theory remains the mathematical
foundation that is widely used even today.

ER remains an important research topic in the database com-
munity [1, 3, 10, 11, 13, 16, 20, 21], and is widely used in many
real-world applications [9] as a crucial step of data preparation [5].
ER Benchmarks and Their Limitations. Undoubtedly, a ma-
jor driving force for advancing the ER research is benchmarks,
e.g., Rahm [12] and AnHai’s Magellan data repository1. However,
preparing ER benchmarks is a daunting task because all entity
pairs (for example, there are ⇠106 pairs for 103 entities) need to be
manually labeled as either matched or unmatched. Hence, the avail-
ability of ER benchmarks is simply not enough from two limitations:
scalability and variety.
Synthesized ER Benchmarks. Intuitively, we want to synthesize
a benchmark Dsyn based on a real benchmark Dreal such that (1)
Dsyn can have a di�erent or same size of Dreal (i.e., |Dsyn | , |Dreal |
or |Dsyn | = |Dreal |); (2) the distributions of synthesized matched
pairs Msyn and unmatched pairs Usyn are “similar” to the real
matched pairs Mreal and unmatched pairsUreal, respectively; (3) the
synthesized data can model many string similarities (or synonyms)
of the real data; and (4) the synthesized entities will protect the
privacy of real entities.

Hence, if we can synthesize an ER benchmark that faithfully
models the real ER benchmark (i.e., the above 1, 2 & 3), we can
1https://sites.google.com/site/anhaidgroup/useful-stu�/data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

test ER solutions for scalability, especially for the blocking oper-
ations [15] to generate candidate matching pairs, because ER is
inherent time consuming that needs to compare O(n2) entity pairs
where n is the total number of entities. Moreover, if privacy (i.e.,
the above 4) can be ensured, it is possible for companies who hold
rich labeled ER datasets to release their data, so as to signi�cantly
enrich the variety of ER benchmarks we can test in academia.
Desiderata. We need to set clear goals about what are desired
properties for a synthesized ER benchmark Esyn(Dsyn,Msyn,Usyn)
w.r.t. a real one Ereal(Dreal,Mreal,Ureal).
(D1) Indistinguishable Entity: given an entity e , one cannot tell

whether e is from Dreal or Dsyn.
(D2) Similar ER Performance: for any ER model M, training and

testing on Ereal should have similar accuracy (e.g., precision
and recall) on Esyn.

(D3) Privacy: given any entity e 0 2 Dsyn, one cannot re-identify a
concrete e 2 Dreal.

D1 requires that Dsyn looks like Dreal (or instance-level). D2
additionally ensures that Esyn resembles Ereal in both matches M
and unmatchesU (or meta-level). Putting D1 and D2 together, they
can be used to generate Esyn with an arbitrary size. D3 is orthogonal
to D1 and D2, but is important for protecting sensitive data.

Note that our goal of synthesizing a ER benchmark is not for
data augmentation [17], whose main target is to automatically and
signi�cantly increase the diversity of training data so as to improve
the model training of M, e.g., avoiding over�tting; instead, we aim
at faithfully reproducing M using Esyn instead of Ereal.
Challenges. (I) How to generate new but indistinguishable entities
(D1)? (II) How to ensure that Esyn can test the performance of “any”
ER model on Ereal (D2). (III) How to ensure privacy (D3)?
Methodology. To be summarized based on what we have.
Contributions. We summarize our notable contributions below.

• Problem Formulation. We de�ne a new problem for synthe-
sizing ER benchmarks. (Section 2)

• erNet: We propose novel solutions. (Section 3)
• erBench: We give details about the benchmarks we have

generated, or what parameters can be tuned. (Section ??)
• Evaluation: We want to show that (a) using the same ER

model on Esyn and Ereal achieve similar performance; and
(b) the model trained on Esyn can be used directly on Ereal.

Moreover, we discuss related work in Section 7, and conclude in
Section 8.

2 PROBLEM STATEMENT
Real ER Benchmark. Let Dreal be two relations Areal and Breal
whose records (or entities) will be denoted by a and b respectively
(i.e., Dreal = (Areal,Breal)). It is known that some entities are com-
mon to Areal and Breal. Consequently the set of ordered pairs

Areal ⇥ Breal = {(a,b) | a 2 Areal,b 2 Breal}

Synthesizing Entity Resolution Benchmarks

ABSTRACT
XXX
ACM Reference Format:
. 2021. Synthesizing Entity Resolution Benchmarks. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
http://vldb.org/pvldb/format_vol14.html.

1 INTRODUCTION
Entity resolution (ER) – the problem of �nding records that refer
to the same real-world object – is a fundamental problem of data
management [7]. It was �rst introduced (named as record linkage)
by Dunn in 1946 [6]. Its probabilistic foundation was laid by New-
combe et al. in 1959 [14], and was formalized by Fellegi and Sunter
in 1969 [8] and the Fellegi-Sunter theory remains the mathematical
foundation that is widely used even today.

ER remains an important research topic in the database com-
munity [1, 3, 10, 11, 13, 16, 20, 21], and is widely used in many
real-world applications [9] as a crucial step of data preparation [5].
ER Benchmarks and Their Limitations. Undoubtedly, a ma-
jor driving force for advancing the ER research is benchmarks,
e.g., Rahm [12] and AnHai’s Magellan data repository1. However,
preparing ER benchmarks is a daunting task because all entity
pairs (for example, there are ⇠106 pairs for 103 entities) need to be
manually labeled as either matched or unmatched. Hence, the avail-
ability of ER benchmarks is simply not enough from two limitations:
scalability and variety.
Synthesized ER Benchmarks. Intuitively, we want to synthesize
a benchmark Dsyn based on a real benchmark Dreal such that (1)
Dsyn can have a di�erent or same size of Dreal (i.e., |Dsyn | , |Dreal |
or |Dsyn | = |Dreal |); (2) the distributions of synthesized matched
pairs Msyn and unmatched pairs Usyn are “similar” to the real
matched pairs Mreal and unmatched pairsUreal, respectively; (3) the
synthesized data can model many string similarities (or synonyms)
of the real data; and (4) the synthesized entities will protect the
privacy of real entities.

Hence, if we can synthesize an ER benchmark that faithfully
models the real ER benchmark (i.e., the above 1, 2 & 3), we can
1https://sites.google.com/site/anhaidgroup/useful-stu�/data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

test ER solutions for scalability, especially for the blocking oper-
ations [15] to generate candidate matching pairs, because ER is
inherent time consuming that needs to compare O(n2) entity pairs
where n is the total number of entities. Moreover, if privacy (i.e.,
the above 4) can be ensured, it is possible for companies who hold
rich labeled ER datasets to release their data, so as to signi�cantly
enrich the variety of ER benchmarks we can test in academia.
Desiderata. We need to set clear goals about what are desired
properties for a synthesized ER benchmark Esyn(Dsyn,Msyn,Usyn)
w.r.t. a real one Ereal(Dreal,Mreal,Ureal).
(D1) Indistinguishable Entity: given an entity e , one cannot tell

whether e is from Dreal or Dsyn.
(D2) Similar ER Performance: for any ER model M, training and

testing on Ereal should have similar accuracy (e.g., precision
and recall) on Esyn.

(D3) Privacy: given any entity e 0 2 Dsyn, one cannot re-identify a
concrete e 2 Dreal.

D1 requires that Dsyn looks like Dreal (or instance-level). D2
additionally ensures that Esyn resembles Ereal in both matches M
and unmatchesU (or meta-level). Putting D1 and D2 together, they
can be used to generate Esyn with an arbitrary size. D3 is orthogonal
to D1 and D2, but is important for protecting sensitive data.

Note that our goal of synthesizing a ER benchmark is not for
data augmentation [17], whose main target is to automatically and
signi�cantly increase the diversity of training data so as to improve
the model training of M, e.g., avoiding over�tting; instead, we aim
at faithfully reproducing M using Esyn instead of Ereal.
Challenges. (I) How to generate new but indistinguishable entities
(D1)? (II) How to ensure that Esyn can test the performance of “any”
ER model on Ereal (D2). (III) How to ensure privacy (D3)?
Methodology. To be summarized based on what we have.
Contributions. We summarize our notable contributions below.

• Problem Formulation. We de�ne a new problem for synthe-
sizing ER benchmarks. (Section 2)

• erNet: We propose novel solutions. (Section 3)
• erBench: We give details about the benchmarks we have

generated, or what parameters can be tuned. (Section ??)
• Evaluation: We want to show that (a) using the same ER

model on Esyn and Ereal achieve similar performance; and
(b) the model trained on Esyn can be used directly on Ereal.

Moreover, we discuss related work in Section 7, and conclude in
Section 8.

2 PROBLEM STATEMENT
Real ER Benchmark. Let Dreal be two relations Areal and Breal
whose records (or entities) will be denoted by a and b respectively
(i.e., Dreal = (Areal,Breal)). It is known that some entities are com-
mon to Areal and Breal. Consequently the set of ordered pairs

Areal ⇥ Breal = {(a,b) | a 2 Areal,b 2 Breal}

,
<latexit sha1_base64="PEG0jCkX6O+4YW10AxCqSMkwLQM=">AAAB+HicbVC7TsMwFHXKq5RXgJElokJiQFWCQMBWxMJYJPqQmipyXKe16tiRfVMpRPkTBhZArPwJI3+DW7LQcoaro3PuvfY9YcKZBtf9tiorq2vrG9XN2tb2zu6evX/Q0TJVhLaJ5FL1QqwpZ4K2gQGnvURRHIecdsPJ3czvTqnSTIpHyBI6iPFIsIgRDEYKbPs2yP0Yw1hHuc5EUQR23W24czjLxCtJHZVoBfaXP5QkjakAwrHWfc1GRIrozBFSYBIPclOwgqLmp5ommEzwiOY41jqLw8I5mT++6M3E/7x+CtH1IGciSYEKYlqMF6XcAenMznOGTFECPDMEE8WAEYeMscIETAg1PzE7NGSc5jROIDN/gjHTi6rJwFu8eJl0zhveZcN9uKg3b8o0qugIHaNT5KEr1ET3qIXaiKApekav6M16sl6sd+vjt7VilTOH6A+szx+Wr5VL</latexit>

Asyn
<latexit sha1_base64="5MZKXG0iPOF8PJeMAl/ScoAa6Ds=">AAAB+HicbVC7TsMwFHXKq5RXgJElokJiQFWCQMBWwcJYJPqQmipyXKe16tiRfVMpRPkTBhZArPwJI3+DW7LQcoaro3PuvfY9YcKZBtf9tiorq2vrG9XN2tb2zu6evX/Q0TJVhLaJ5FL1QqwpZ4K2gQGnvURRHIecdsPJ3czvTqnSTIpHyBI6iPFIsIgRDEYKbPs2yP0Yw1hHuc5EUQR23W24czjLxCtJHZVoBfaXP5QkjakAwrHWfc1GRIrozBFSYBIPclOwgqLmp5ommEzwiOY41jqLw8I5mT++6M3E/7x+CtH1IGciSYEKYlqMF6XcAenMznOGTFECPDMEE8WAEYeMscIETAg1PzE7NGSc5jROIDN/gjHTi6rJwFu8eJl0zhveZcN9uKg3b8o0qugIHaNT5KEr1ET3qIXaiKApekav6M16sl6sd+vjt7VilTOH6A+szx+YQZVM</latexit>

Bsyn,
Differentially Private
Transformer Models

<latexit sha1_base64="f1pRMeyGwpaREtpId3nVVpuKrpE=">AAAB6HicbVC7TsNAEFyHVwivACWNRYSgQJGNQFBGoaEMiDykJIrOl3Ny5B6Wb41kWfkDChpAtPwRJX/DBdyQMMVqNLO72tkgEtyg5305haXlldW14nppY3Nre6e8u9cyOokpa1ItdNwJiGGCK9ZEjoJ1opgRGQjWDibXM7/9yGLDtbrHNGJ9SUaKh5wStNJd/XhQrnhV7wfuIvFzUoEcjUH5szfUNJFMIRXEmK7hI6pVeOoqrQiV/cwWEuO01EsMiwidkBHLiDQmlcHUPZIEx2bem4n/ed0Ew6t+xlWUIFPUtlgvTISL2p3FcYc8ZhRFagmhMUdOXTomMaFoQ5d6kd1hMBUsYzLC1N6EY27mVfsDfz7xImmdVf2Lqnd7XqnV828U4QAO4QR8uIQa3EADmkAhhCd4gVfnwXl23pz339aCk8/swx84H99JBI43</latexit>

B0<latexit sha1_base64="d2fDS2w2Y6siHIwZXnNmeU5P49E=">AAAB6HicbVC7TsNAEFyHVwivACWNRYSgQJGNQFAGaCgDIg8piaLz5ZwcuYflWyNZVv6AggYQLX9Eyd9wATckTLEazeyudjaIBDfoeV9OYWFxaXmluFpaW9/Y3Cpv7zSNTmLKGlQLHbcDYpjgijWQo2DtKGZEBoK1gvH11G89sthwre4xjVhPkqHiIacErXR3edgvV7yq9wN3nvg5qUCOer/82R1omkimkApiTMfwIdUqPHaVVoTKXmYLiXFS6iaGRYSOyZBlRBqTymDiHkiCIzPrTcX/vE6C4UUv4ypKkClqW6wXJsJF7U7juAMeM4oitYTQmCOnLh2RmFC0oUvdyO4wmAqWMRlham/CETezqv2BP5t4njRPqv5Z1bs9rdSu8m8UYQ/24Qh8OIca3EAdGkAhhCd4gVfnwXl23pz339aCk8/swh84H99HgI42</latexit>

A0,Data
Background

<latexit sha1_base64="f1pRMeyGwpaREtpId3nVVpuKrpE=">AAAB6HicbVC7TsNAEFyHVwivACWNRYSgQJGNQFBGoaEMiDykJIrOl3Ny5B6Wb41kWfkDChpAtPwRJX/DBdyQMMVqNLO72tkgEtyg5305haXlldW14nppY3Nre6e8u9cyOokpa1ItdNwJiGGCK9ZEjoJ1opgRGQjWDibXM7/9yGLDtbrHNGJ9SUaKh5wStNJd/XhQrnhV7wfuIvFzUoEcjUH5szfUNJFMIRXEmK7hI6pVeOoqrQiV/cwWEuO01EsMiwidkBHLiDQmlcHUPZIEx2bem4n/ed0Ew6t+xlWUIFPUtlgvTISL2p3FcYc8ZhRFagmhMUdOXTomMaFoQ5d6kd1hMBUsYzLC1N6EY27mVfsDfz7xImmdVf2Lqnd7XqnV828U4QAO4QR8uIQa3EADmkAhhCd4gVfnwXl23pz339aCk8/swx84H99JBI43</latexit>

B0<latexit sha1_base64="d2fDS2w2Y6siHIwZXnNmeU5P49E=">AAAB6HicbVC7TsNAEFyHVwivACWNRYSgQJGNQFAGaCgDIg8piaLz5ZwcuYflWyNZVv6AggYQLX9Eyd9wATckTLEazeyudjaIBDfoeV9OYWFxaXmluFpaW9/Y3Cpv7zSNTmLKGlQLHbcDYpjgijWQo2DtKGZEBoK1gvH11G89sthwre4xjVhPkqHiIacErXR3edgvV7yq9wN3nvg5qUCOer/82R1omkimkApiTMfwIdUqPHaVVoTKXmYLiXFS6iaGRYSOyZBlRBqTymDiHkiCIzPrTcX/vE6C4UUv4ypKkClqW6wXJsJF7U7juAMeM4oitYTQmCOnLh2RmFC0oUvdyO4wmAqWMRlham/CETezqv2BP5t4njRPqv5Z1bs9rdSu8m8UYQ/24Qh8OIca3EAdGkAhhCd4gVfnwXl23pz339aCk8/swh84H99HgI42</latexit>

A0,in
String Pairs

Differential Privacy GuaranteeDesensitization Information

Real Data Background Data Synthesized Data

Fig. 2. How to Achieve Privacy Preserving.

D. Problem Statement

Our goal is to synthesize an ER dataset Esyn based on Ereal.
More formally, the problem is defined as follows.

Synthesizing ER Datasets. Given the O-distribution of a real
ER dataset Ereal, and the desired sizes of the synthesized ta-
bles: na for Asyn and nb for Bsyn (by default, na = |Areal| and
nb = |Breal|, where |Areal| and |Breal| are the size of Areal and
Breal, respectivly), the problem of synthesizing ER datasets is
to synthesize another ER dataset Esyn (Asyn, Bsyn,Msyn, Nsyn),
such that |Asyn| = na, |Bsyn| = nb (where |Asyn| and |Bsyn| are
the size of Asyn and Bsyn, respectivly), and the performance
difference between Msyn trained on Esyn and Mreal trained on
Ereal on the same test set T is minimized:

min |eval(Mreal(T))− eval(Msyn(T))| (2)

where eval is an evaluation metric, e.g., F1-score or precision.
Recall the desiderata of synthesized ER datasets in Sec-

tion I: (1) indistinguishable entities; (2) performance preser-
vation, and (3) privacy preserving.

For (1), we use transformer models [23] to synthesize
entities which resemble real ones.

For (2), we synthesize Esyn whose O-distribution is similar
to the O-distribution of Ereal, with which to ensure that trained
ER matchers have similar performance.

For (3), we will not use real data for synthesizing, but
instead we use the data in the same domain but not in the active
domain (i.e., the same dataset), called background data. For
example, if Ereal contains names from the US, the background
data could be names from Europe, which are easy to obtain.
That is, when training the transformer models for ER dataset
synthesis, we use the true O-distribution from the real dataset
but not the true entities. Even if the true similarity between
two entities (e.g., 0.8) can be attacked or inverted, no true
entities will be identified because there are infinite number
of entity pairs whose similarity could be 0.8. Naturally, the
privacy of true entities will be preserved. Also, because the
training data and the real data are from the same domain, the
synthesized entities can resemble real entities. Besides, to also
protect the privacy of training data, we train the transformer
models differential privately by clipping and adding random
noise to the gradients before gradient decent. By this way, the
transformer model satisfies differential privacy [24].

Figure 2 explains how do we achieve privacy preserving.
The input of the synthesizer contains two parts: (1) the distri-
butions of similarity vectors computed by Areal and Breal. The
distributions of similarity vectors will not leak any information
of real entities because one similarity vector can corresponding

3

to infinite entity pairs; and (2) the transformer models trained
by the string pairs in the background data A′ and B′. The
transformer models satisfy DP so the models will protect the
privacy of A′, B′, and A′, B′ has no overlap with Areal, Breal,
so the transformer models will also protect the privacy of
Areal, Breal. In summary, neither of (1) and (2) will reveal
privacy information of entities in Areal and Breal (i.e., the green
parts), so the synthesizer is privacy preserving.

III. SOLUTION OVERVIEW

Let Oreal (resp. Osyn) be the O-distribution of Ereal (resp.
Esyn). Before we propose our solution, let’s discuss our goal.

Minimize the Difference between Oreal and Osyn. Consider
an ER matcher trained on Oreal. If we can synthesize Esyn

whose Osyn resembles Oreal, the matcher trained by Esyn will
behave similar to the matcher trained by Ereal, so the problem
of synthesizing ER datasets (Equation 2) can be transformed to
minimize the Jensen-Shannon divergence (JSD) [25] between
Oreal with the PDF p(x) and Osyn with the PDF q(x):

min JSD(p || q) = 1

2
KL(p || p+ q

2
) +

1

2
KL(q || p+ q

2
) (3)

where || is to represent the relationship between two distribu-
tions p and q, KL is the Kullback-Leibler divergence [25].

Our goal is to synthesize Esyn such that Osyn is equal to
(or close to) Oreal. Clearly we do not want our solution to be
a duplicate of Ereal, so assume we only know the distribution
Oreal we want to match (but not the original dataset Ereal).

Now, we discuss the tractability of our problem. Since
our problem is not a decision problem, the notion of NP-
completeness is not directly applicable. However, here we
define a closely related decision problem, the SynER-Decision
problem (which can be thought as a special case of our
problem). We prove the SynER-Decision problem is NP-
Complete, indicating that our problem (with only input Oreal)
is also computationally intractable. Now, we formally define
the SynER-Decision problem. In this problem, we are given
Asyn, which consists of n records (i.e., we already have one
relation, and we need to synthesize the other relation Bsyn).
Both Asyn and Bsyn have the same attributes “id” and “title”.
We are also given theM-distribution (we only have matching
set for simplicity). Breal should consist of only 1 record, the
similarity function used here is the edit distance. The goal of
the decision problem is to decide whether there is a record of
Bsyn that can satisfy the given M-distribution exactly.

Theorem 1: The SynER-Decision problem is NP-Complete.
2

Proof: Since the only non-id attribute is “title”, each record is
a string. Clearly, this problem is a decision problem and one
can verify if a given string (as the record of Bsyn) is a valid
solution by computing the edit distances between this string
and all strings in Asyn in polynomial time (hence the M-
distribution). Now, we provide a reduction from the following
central string problem which is known to be NP-complete
[26]. The central string problem is defined as follows: we

are given n strings s1, . . . , sn, and the problem is to decide
whether there is a string s such that the edit distance between
s and si is at most k for all 1 ≤ i ≤ n. In fact, if one examines
the proof of [26], one can see that the problem of determining
whether there exists string s such that the edit distance between
s and si is equal to k for all i is also NP-Complete. Given a
central string problem instance, we can naturally construct a
SynER-Decision instance as follows: Asyn consists of n strings
s1, . . . , sn. The given M-distribution is only supported on k
(i.e., with probability 1, its takes value k). Hence, synthesizing
the record of Bsyn is equivalent to finding a string s whose edit
distance to si is exactly k for all i, hence the NP-Completeness
of SynER-Decision. 2

In summary, we can conclude that synthesizing Esyn such
that Osyn is equal to Oreal is a computational intractable
problem. Hence, we propose a heuristic method to synthesize
Esyn such that Osyn is similar with Oreal in this section.

We design a framework for synthesizing ER datasets as
shown in Figure 3. The Algorithm SERD (Synthesize ER
Datasets) with three steps is overviewed below, and technical
details are postponed to latter sections.

S1. [Learn Distributions from Ereal.] Given Areal and Breal

(Figure 3(a)), we first compute the matching similarity vec-
tors X+

real and non-matching similarity vectors X−
real of Ereal

(Figure 3(b)). We then learn theM- and N -distributions from
X+

real and X−
real, respectively (Figure 3(c)).

S2. [Synthesize Esyn.] We bootstrap by manually preparing
one fake A-entity a, i.e., Asyn = {a} and Bsyn = {} (we
discuss how to get an entity a later). Then, the following of
this step is an iterative process. In each iteration, we sample a
synthesized entity e from Asyn ∪ Bsyn and a similarity vector
x from Oreal, which are used to synthesize a new entity e′. If
|Asyn| = na and |Bsyn| = nb, this step is complete, and we go
to step S3.

a) S2-1. [Sample a Synthesized Entity.]: Randomly se-
lect an entity e from Asyn ∪Bsyn.

b) S2-2. [Sample a Similarity Vector.]: Sample a similar-
ity vector x from M-distribution with probability π and from
N -distribution with probability 1− π (Figure 3(d)).

c) S2-3. [Synthesize a New Entity.]: If x is sampled from
M-distribution, we synthesize an entity e′ that matches e;
otherwise, if x is sampled from N -distribution, we synthesize
e′ that will not match e (Figure 3(e)), where e′ is synthesized
based on e and x such that the similarity vector of e′ and e
is x (see Section IV for details).

d) S2-4. [Add Synthesized Entity to Esyn.]: If e is sam-
pled from Asyn, we add e′ to Bsyn; otherwise (e is sampled
from Bsyn), we add e′ to Asyn. Moreover, if x is sampled from
M-distribution, we add (e, e′) to Msyn; otherwise, we add
(e, e′) to Nsyn.

e) S2-5. [Loop.]: Go to step S2.

S3. [Label All Pairs.] As a dataset, Esyn should have labels
for all pairs of entities, so we should label the entity pairs
which are not in Msyn ∪ Nsyn as matching or non-matching

4

Step-2: Synthesize

⚙

Step-1: Learn Distributions

"

Synthesizing Entity Resolution Benchmarks

ABSTRACT
XXX
ACM Reference Format:
. 2021. Synthesizing Entity Resolution Benchmarks. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
http://vldb.org/pvldb/format_vol14.html.

1 INTRODUCTION
Entity resolution (ER) – the problem of �nding records that refer
to the same real-world object – is a fundamental problem of data
management [7]. It was �rst introduced (named as record linkage)
by Dunn in 1946 [6]. Its probabilistic foundation was laid by New-
combe et al. in 1959 [14], and was formalized by Fellegi and Sunter
in 1969 [8] and the Fellegi-Sunter theory remains the mathematical
foundation that is widely used even today.

ER remains an important research topic in the database com-
munity [1, 3, 10, 11, 13, 16, 20, 21], and is widely used in many
real-world applications [9] as a crucial step of data preparation [5].
ER Benchmarks and Their Limitations. Undoubtedly, a ma-
jor driving force for advancing the ER research is benchmarks,
e.g., Rahm [12] and AnHai’s Magellan data repository1. However,
preparing ER benchmarks is a daunting task because all entity
pairs (for example, there are ⇠106 pairs for 103 entities) need to be
manually labeled as either matched or unmatched. Hence, the avail-
ability of ER benchmarks is simply not enough from two limitations:
scalability and variety.
Synthesized ER Benchmarks. Intuitively, we want to synthesize
a benchmark Dsyn based on a real benchmark Dreal such that (1)
Dsyn can have a di�erent or same size of Dreal (i.e., |Dsyn | , |Dreal |
or |Dsyn | = |Dreal |); (2) the distributions of synthesized matched
pairs Msyn and unmatched pairs Usyn are “similar” to the real
matched pairs Mreal and unmatched pairsUreal, respectively; (3) the
synthesized data can model many string similarities (or synonyms)
of the real data; and (4) the synthesized entities will protect the
privacy of real entities.

Hence, if we can synthesize an ER benchmark that faithfully
models the real ER benchmark (i.e., the above 1, 2 & 3), we can
1https://sites.google.com/site/anhaidgroup/useful-stu�/data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

test ER solutions for scalability, especially for the blocking oper-
ations [15] to generate candidate matching pairs, because ER is
inherent time consuming that needs to compare O(n2) entity pairs
where n is the total number of entities. Moreover, if privacy (i.e.,
the above 4) can be ensured, it is possible for companies who hold
rich labeled ER datasets to release their data, so as to signi�cantly
enrich the variety of ER benchmarks we can test in academia.
Desiderata. We need to set clear goals about what are desired
properties for a synthesized ER benchmark Esyn(Dsyn,Msyn,Usyn)
w.r.t. a real one Ereal(Dreal,Mreal,Ureal).
(D1) Indistinguishable Entity: given an entity e , one cannot tell

whether e is from Dreal or Dsyn.
(D2) Similar ER Performance: for any ER model M, training and

testing on Ereal should have similar accuracy (e.g., precision
and recall) on Esyn.

(D3) Privacy: given any entity e 0 2 Dsyn, one cannot re-identify a
concrete e 2 Dreal.

D1 requires that Dsyn looks like Dreal (or instance-level). D2
additionally ensures that Esyn resembles Ereal in both matches M
and unmatchesU (or meta-level). Putting D1 and D2 together, they
can be used to generate Esyn with an arbitrary size. D3 is orthogonal
to D1 and D2, but is important for protecting sensitive data.

Note that our goal of synthesizing a ER benchmark is not for
data augmentation [17], whose main target is to automatically and
signi�cantly increase the diversity of training data so as to improve
the model training of M, e.g., avoiding over�tting; instead, we aim
at faithfully reproducing M using Esyn instead of Ereal.
Challenges. (I) How to generate new but indistinguishable entities
(D1)? (II) How to ensure that Esyn can test the performance of “any”
ER model on Ereal (D2). (III) How to ensure privacy (D3)?
Methodology. To be summarized based on what we have.
Contributions. We summarize our notable contributions below.

• Problem Formulation. We de�ne a new problem for synthe-
sizing ER benchmarks. (Section 2)

• erNet: We propose novel solutions. (Section 3)
• erBench: We give details about the benchmarks we have

generated, or what parameters can be tuned. (Section ??)
• Evaluation: We want to show that (a) using the same ER

model on Esyn and Ereal achieve similar performance; and
(b) the model trained on Esyn can be used directly on Ereal.

Moreover, we discuss related work in Section 7, and conclude in
Section 8.

2 PROBLEM STATEMENT
Real ER Benchmark. Let Dreal be two relations Areal and Breal
whose records (or entities) will be denoted by a and b respectively
(i.e., Dreal = (Areal,Breal)). It is known that some entities are com-
mon to Areal and Breal. Consequently the set of ordered pairs

Areal ⇥ Breal = {(a,b) | a 2 Areal,b 2 Breal}

Synthesizing Entity Resolution Benchmarks

ABSTRACT
XXX
ACM Reference Format:
. 2021. Synthesizing Entity Resolution Benchmarks. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
http://vldb.org/pvldb/format_vol14.html.

1 INTRODUCTION
Entity resolution (ER) – the problem of �nding records that refer
to the same real-world object – is a fundamental problem of data
management [7]. It was �rst introduced (named as record linkage)
by Dunn in 1946 [6]. Its probabilistic foundation was laid by New-
combe et al. in 1959 [14], and was formalized by Fellegi and Sunter
in 1969 [8] and the Fellegi-Sunter theory remains the mathematical
foundation that is widely used even today.

ER remains an important research topic in the database com-
munity [1, 3, 10, 11, 13, 16, 20, 21], and is widely used in many
real-world applications [9] as a crucial step of data preparation [5].
ER Benchmarks and Their Limitations. Undoubtedly, a ma-
jor driving force for advancing the ER research is benchmarks,
e.g., Rahm [12] and AnHai’s Magellan data repository1. However,
preparing ER benchmarks is a daunting task because all entity
pairs (for example, there are ⇠106 pairs for 103 entities) need to be
manually labeled as either matched or unmatched. Hence, the avail-
ability of ER benchmarks is simply not enough from two limitations:
scalability and variety.
Synthesized ER Benchmarks. Intuitively, we want to synthesize
a benchmark Dsyn based on a real benchmark Dreal such that (1)
Dsyn can have a di�erent or same size of Dreal (i.e., |Dsyn | , |Dreal |
or |Dsyn | = |Dreal |); (2) the distributions of synthesized matched
pairs Msyn and unmatched pairs Usyn are “similar” to the real
matched pairs Mreal and unmatched pairsUreal, respectively; (3) the
synthesized data can model many string similarities (or synonyms)
of the real data; and (4) the synthesized entities will protect the
privacy of real entities.

Hence, if we can synthesize an ER benchmark that faithfully
models the real ER benchmark (i.e., the above 1, 2 & 3), we can
1https://sites.google.com/site/anhaidgroup/useful-stu�/data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

test ER solutions for scalability, especially for the blocking oper-
ations [15] to generate candidate matching pairs, because ER is
inherent time consuming that needs to compare O(n2) entity pairs
where n is the total number of entities. Moreover, if privacy (i.e.,
the above 4) can be ensured, it is possible for companies who hold
rich labeled ER datasets to release their data, so as to signi�cantly
enrich the variety of ER benchmarks we can test in academia.
Desiderata. We need to set clear goals about what are desired
properties for a synthesized ER benchmark Esyn(Dsyn,Msyn,Usyn)
w.r.t. a real one Ereal(Dreal,Mreal,Ureal).
(D1) Indistinguishable Entity: given an entity e , one cannot tell

whether e is from Dreal or Dsyn.
(D2) Similar ER Performance: for any ER model M, training and

testing on Ereal should have similar accuracy (e.g., precision
and recall) on Esyn.

(D3) Privacy: given any entity e 0 2 Dsyn, one cannot re-identify a
concrete e 2 Dreal.

D1 requires that Dsyn looks like Dreal (or instance-level). D2
additionally ensures that Esyn resembles Ereal in both matches M
and unmatchesU (or meta-level). Putting D1 and D2 together, they
can be used to generate Esyn with an arbitrary size. D3 is orthogonal
to D1 and D2, but is important for protecting sensitive data.

Note that our goal of synthesizing a ER benchmark is not for
data augmentation [17], whose main target is to automatically and
signi�cantly increase the diversity of training data so as to improve
the model training of M, e.g., avoiding over�tting; instead, we aim
at faithfully reproducing M using Esyn instead of Ereal.
Challenges. (I) How to generate new but indistinguishable entities
(D1)? (II) How to ensure that Esyn can test the performance of “any”
ER model on Ereal (D2). (III) How to ensure privacy (D3)?
Methodology. To be summarized based on what we have.
Contributions. We summarize our notable contributions below.

• Problem Formulation. We de�ne a new problem for synthe-
sizing ER benchmarks. (Section 2)

• erNet: We propose novel solutions. (Section 3)
• erBench: We give details about the benchmarks we have

generated, or what parameters can be tuned. (Section ??)
• Evaluation: We want to show that (a) using the same ER

model on Esyn and Ereal achieve similar performance; and
(b) the model trained on Esyn can be used directly on Ereal.

Moreover, we discuss related work in Section 7, and conclude in
Section 8.

2 PROBLEM STATEMENT
Real ER Benchmark. Let Dreal be two relations Areal and Breal
whose records (or entities) will be denoted by a and b respectively
(i.e., Dreal = (Areal,Breal)). It is known that some entities are com-
mon to Areal and Breal. Consequently the set of ordered pairs

Areal ⇥ Breal = {(a,b) | a 2 Areal,b 2 Breal}

20
0

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1.0

40
60

0.0 0.2 0.4 0.6 0.8
40000
80000

120000
160000

title_jac_qgm_3_qgm_3

M-Distribution

N-Distribution
Similarity Vectors of

Non-matching Entity Pairs

Similarity Vectors of
Matching Entity Pairs

Sampled Similarity Vectors of
Matching Entity Pairs

Sampled Similarity Vectors of
Non-matching Entity Pairs

<latexit sha1_base64="xHBt80eGcuDn1VOQg5QdwH3IFq4=">AAACGHicbVC7TsNAEDyHVwgvAyWNRYREESw7gKCMoKEMEnlIcbDOl3Nyyvls+dYIy8pvUPAtFDSAKKHjbziDC5IwxWlmZ/e0O17EmQTL+tJKC4tLyyvl1cra+sbmlr6905ZhEhPaIiEP466HJeVM0BYw4LQbxRQHHqcdb3yZ+507GksWihtII9oP8FAwnxEMquTqlhNgGHl+dj9x7duj2h9Zn5bHSpqm6epVy7R+YMwTuyBVVKDp6h/OICRJQAUQjqXsSTYkofBrhggFJkE/Uw+OYVJxEkkjTMZ4SDMcSJkG3sQ4yDeQs15e/M/rJeCf9zMmogSoIKpFeX7CDQiN/HxjwGJKgKeKYBIzYMQgIxxjAiqkihOpPySknGY0iCBVO8GIydmqysCevXietOumfWpa1yfVxkWRRhntoX10iGx0hhroCjVRCxH0gJ7QC3rVHrVn7U17/20tacXMLpqC9vkNWAag5w==</latexit>

x�1 , x
�
2 , x

�
3 , ...

<latexit sha1_base64="O5oZ1+8tM7/L5SQOOOkmPshJfHg=">AAACGHicbVC7TsNAEDyHVwgvAyWNRYSERGTZAQRlBA1lkMhDioN1vpyTU85ny7dGWFZ+g4JvoaABRAkdf8MZXJCEKU4zO7un3fEiziRY1pdWWlhcWl4pr1bW1jc2t/TtnbYMk5jQFgl5GHc9LClngraAAafdKKY48DjteOPL3O/c0ViyUNxAGtF+gIeC+YxgUCVXt5wAw8jzs/uJa98e1f7I+rQ8VtI0TVevWqb1A2Oe2AWpogJNV/9wBiFJAiqAcCxlT7IhCYVfM0QoMAn6mXpwDJOKk0gaYTLGQ5rhQMo08CbGQb6BnPXy4n9eLwH/vJ8xESVABVEtyvMTbkBo5OcbAxZTAjxVBJOYASMGGeEYE1AhVZxI/SEh5TSjQQSp2glGTM5WVQb27MXzpF037VPTuj6pNi6KNMpoD+2jQ2SjM9RAV6iJWoigB/SEXtCr9qg9a2/a+29rSStmdtEUtM9vToKg4Q==</latexit>

x+1 , x
+
2 , x
+
3 , ...

…

…

<latexit sha1_base64="PEG0jCkX6O+4YW10AxCqSMkwLQM=">AAAB+HicbVC7TsMwFHXKq5RXgJElokJiQFWCQMBWxMJYJPqQmipyXKe16tiRfVMpRPkTBhZArPwJI3+DW7LQcoaro3PuvfY9YcKZBtf9tiorq2vrG9XN2tb2zu6evX/Q0TJVhLaJ5FL1QqwpZ4K2gQGnvURRHIecdsPJ3czvTqnSTIpHyBI6iPFIsIgRDEYKbPs2yP0Yw1hHuc5EUQR23W24czjLxCtJHZVoBfaXP5QkjakAwrHWfc1GRIrozBFSYBIPclOwgqLmp5ommEzwiOY41jqLw8I5mT++6M3E/7x+CtH1IGciSYEKYlqMF6XcAenMznOGTFECPDMEE8WAEYeMscIETAg1PzE7NGSc5jROIDN/gjHTi6rJwFu8eJl0zhveZcN9uKg3b8o0qugIHaNT5KEr1ET3qIXaiKApekav6M16sl6sd+vjt7VilTOH6A+szx+Wr5VL</latexit>

Asyn
<latexit sha1_base64="5MZKXG0iPOF8PJeMAl/ScoAa6Ds=">AAAB+HicbVC7TsMwFHXKq5RXgJElokJiQFWCQMBWwcJYJPqQmipyXKe16tiRfVMpRPkTBhZArPwJI3+DW7LQcoaro3PuvfY9YcKZBtf9tiorq2vrG9XN2tb2zu6evX/Q0TJVhLaJ5FL1QqwpZ4K2gQGnvURRHIecdsPJ3czvTqnSTIpHyBI6iPFIsIgRDEYKbPs2yP0Yw1hHuc5EUQR23W24czjLxCtJHZVoBfaXP5QkjakAwrHWfc1GRIrozBFSYBIPclOwgqLmp5ommEzwiOY41jqLw8I5mT++6M3E/7x+CtH1IGciSYEKYlqMF6XcAenMznOGTFECPDMEE8WAEYeMscIETAg1PzE7NGSc5jROIDN/gjHTi6rJwFu8eJl0zhveZcN9uKg3b8o0qugIHaNT5KEr1ET3qIXaiKApekav6M16sl6sd+vjt7VilTOH6A+szx+YQZVM</latexit>

Bsyn

…

<latexit sha1_base64="WN50M6/yIdB3czMuPEeZ6uf+uzE=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYhA8SNgVRb0FvHiMaB6QhDA7md0Mmccy0yssSz7BgxcVr36RR//GieZiYh2aoqq76eooFdxiEHx5S8srq2vrpY3y5tb2zm5lb79ldWYoa1IttOlExDLBFWsiR8E6qWFERoK1o/HN1G8/MmO5Vg+Yp6wvSaJ4zClBJ92TQTioVINa8AN/kYQzUoUZGoPKZ2+oaSaZQiqItV3LE6pVfOorrQiV/cIVYnBS7mWWpYSOScIKIq3NZTTxjyXBkZ33puJ/XjfD+KpfcJVmyBR1Lc6LM+Gj9qd5/CE3jKLIHSHUcOTUpyNiCEWXutxL3Q6LuWAFkynm7iYccTuvuh+E84kXSeusFl7Ugrvzav169o0SHMIRnEAIl1CHW2hAEygk8AQv8OqNvWfvzXv/bV3yZjMH8Afexzc5uo7A</latexit>a1
<latexit sha1_base64="odt9BT4OvqApOyTsfnHh2ZEte+0=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYhA8SNgVRb0FvHiMaB6QhDA7md0Mmccy0yssSz7BgxcVr36RR//GieZiYh2aoqq76eooFdxiEHx5S8srq2vrpY3y5tb2zm5lb79ldWYoa1IttOlExDLBFWsiR8E6qWFERoK1o/HN1G8/MmO5Vg+Yp6wvSaJ4zClBJ91Hg3BQqQa14Af+IglnpAozNAaVz95Q00wyhVQQa7uWJ1Sr+NRXWhEq+4UrxOCk3MssSwkdk4QVRFqby2jiH0uCIzvvTcX/vG6G8VW/4CrNkCnqWpwXZ8JH7U/z+ENuGEWRO0Ko4cipT0fEEIoudbmXuh0Wc8EKJlPM3U044nZedT8I5xMvktZZLbyoBXfn1fr17BslOIQjOIEQLqEOt9CAJlBI4Ale4NUbe8/em/f+27rkzWYO4A+8j287P47B</latexit>

b1
<latexit sha1_base64="RV9jiEWMmUuHPxSQGXPhnVk+zUI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69BIvgQUpSFPVW8OKxov2AtpTNdpMu3d2E3YkQQn+CBy8qXv1FHv03bjUXW99heLw3M8ybIBHcoOd9OaWV1bX1jfJmZWt7Z3evun/QMXGqKWvTWMS6FxDDBFesjRwF6yWaERkI1g2mN3O/+8i04bF6wCxhQ0kixUNOCVrpnowao2rNq3s/cJeJX5AaFGiNqp+DcUxTyRRSQYzpGx7RWIVnrooVoXKY20I0ziqD1LCE0CmJWE6kMZkMZu6JJDgxi95c/M/rpxheDXOukhSZorbFemEqXIzdeR53zDWjKDJLCNUcOXXphGhC0aauDBK7w2AmWM5kgpm9CSfcLKr2B/5i4mXSadT9i7p3d15rXhffKMMRHMMp+HAJTbiFFrSBQgRP8AKvztR5dt6c99/WklPMHMIfOB/fOz2OwQ==</latexit>a2

<latexit sha1_base64="HxWiJUFwN/F5qMfdxOAzss9xWU4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69BIvgQUpSFPVW8OKxov2AtpTNdpMu3d2E3YkQQn+CBy8qXv1FHv03bjUXW99heLw3M8ybIBHcoOd9OaWV1bX1jfJmZWt7Z3evun/QMXGqKWvTWMS6FxDDBFesjRwF6yWaERkI1g2mN3O/+8i04bF6wCxhQ0kixUNOCVrpPhg1RtWaV/d+4C4TvyA1KNAaVT8H45imkimkghjTNzyisQrPXBUrQuUwt4VonFUGqWEJoVMSsZxIYzIZzNwTSXBiFr25+J/XTzG8GuZcJSkyRW2L9cJUuBi78zzumGtGUWSWEKo5curSCdGEok1dGSR2h8FMsJzJBDN7E064WVTtD/zFxMuk06j7F3Xv7rzWvC6+UYYjOIZT8OESmnALLWgDhQie4AVenanz7Lw577+tJaeYOYQ/cD6+ATzCjsI=</latexit>

b2
<latexit sha1_base64="+0S6IQJ19MDeM8oyhWUt0dz+Ud4=">AAAB6XicbVC7TsNAEFyHVwivACWNRYREgSKbh4AuEg1lEOQhJVF0vpydU8531t0aybLyCRQ0gGj5Ikr+hgu4IWGK1Whmd7WzQSK4Qc/7ckpLyyura+X1ysbm1vZOdXevbVSqKWtRJZTuBsQwwSVrIUfBuolmJA4E6wSTm5nfeWTacCUfMEvYICaR5CGnBK10T4Znw2rNq3s/cBeJX5AaFGgOq5/9kaJpzCRSQYzpGR5RJcMTVypJaDzIbSEap5V+alhC6IRELCexMVkcTN2jmODYzHsz8T+vl2J4Nci5TFJkktoW64WpcFG5szzuiGtGUWSWEKo5curSMdGEok1d6Sd2h8FMsJzFCWb2JhxzM6/aH/jziRdJ+7TuX9S9u/Na47r4RhkO4BCOwYdLaMAtNKEFFCJ4ghd4dSbOs/PmvP+2lpxiZh/+wPn4BjzAjsI=</latexit>a3

<latexit sha1_base64="fbLXRsnZdSc9/7arnIu2lvbc3sg=">AAAB6XicbVC7TsNAEFyHVwivACWNRYREgSKbh4AuEg1lEOQhJVF0vpydU8531t0aybLyCRQ0gGj5Ikr+hgu4IWGK1Whmd7WzQSK4Qc/7ckpLyyura+X1ysbm1vZOdXevbVSqKWtRJZTuBsQwwSVrIUfBuolmJA4E6wSTm5nfeWTacCUfMEvYICaR5CGnBK10HwzPhtWaV/d+4C4SvyA1KNAcVj/7I0XTmEmkghjTMzyiSoYnrlSS0HiQ20I0Tiv91LCE0AmJWE5iY7I4mLpHMcGxmfdm4n9eL8XwapBzmaTIJLUt1gtT4aJyZ3ncEdeMosgsIVRz5NSlY6IJRZu60k/sDoOZYDmLE8zsTTjmZl61P/DnEy+S9mndv6h7d+e1xnXxjTIcwCEcgw+X0IBbaEILKETwBC/w6kycZ+fNef9tLTnFzD78gfPxDT5FjsM=</latexit>

b3

<latexit sha1_base64="Wxn0ngLPUhrLwYck+oJqMKVI0/A=">AAAB9HicbVC7TsNAEDzzDOEVoKSxiJAoILIjEJSRaCiDRB5SnETnyzk55R7W3TrCsvIfFDSAaPkXSv6GM7ghYYrVaGZ373bCmDMDnvflrKyurW9slrbK2zu7e/uVg8O2UYkmtEUUV7obYkM5k7QFDDjtxppiEXLaCae3ud+ZUW2Ykg+QxrQv8FiyiBEMVhoEAsMkjLLH+dAfXAwrVa/m/cBdJn5BqqhAc1j5DEaKJIJKIBwb0zNsTJSMzl2pJCain9mCNczLQWJojMkUj2mGhTGpCOfuaf66WfRy8T+vl0B008+YjBOgktgW60UJd0G5+WnuiGlKgKeWYKIZMOKSCdaYgA2gHMR2h4GU04yKGFL7J5gws6jaDPzFi5dJu17zr2re/WW1US/SKKFjdILOkI+uUQPdoSZqIYI0ekIv6NWZOc/Om/P+27riFDNH6A+cj2+bkZOP</latexit>

x�1
<latexit sha1_base64="ISnkZJ+AIe91Il89rErALc250Fk=">AAAB9HicbVC7TsNAEDzzDOEVoKSxiJAoILIjEJSRaCiDRB5SnETnyzk55R7W3TrCsvIfFDSAaPkXSv6GM7ghYYrVaGZ373bCmDMDnvflrKyurW9slrbK2zu7e/uVg8O2UYkmtEUUV7obYkM5k7QFDDjtxppiEXLaCae3ud+ZUW2Ykg+QxrQv8FiyiBEMVhoEAsMkjLLH+bA+uBhWql7N+4G7TPyCVFGB5rDyGYwUSQSVQDg2pmfYmCgZnbtSSUxEP7MFa5iXg8TQGJMpHtMMC2NSEc7d0/x1s+jl4n9eL4Hopp8xGSdAJbEt1osS7oJy89PcEdOUAE8twUQzYMQlE6wxARtAOYjtDgMppxkVMaT2TzBhZlG1GfiLFy+Tdr3mX9W8+8tqo16kUULH6ASdIR9dowa6Q03UQgRp9IRe0Kszc56dN+f9t3XFKWaO0B84H9+dFpOQ</latexit>

x�2
<latexit sha1_base64="UTiuoGcJa9Jr+HuowOlZB7FMJsQ=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREAZEdQFBGoqEMEnlIcRKdL+fklHtYd+sIy8p/UNAAouVfKPkbzpCGhClWo5ndvdsJY84MeN6XU1hZXVvfKG6WtrZ3dvfK+wctoxJNaJMornQnxIZyJmkTGHDaiTXFIuS0HU5uc789pdowJR8gjWlP4JFkESMYrNQPBIZxGGWPs8FF/3xQrnhV7wfuMvHnpILmaAzKn8FQkURQCYRjY7qGjYiS0ZkrlcRE9DJbsIZZKUgMjTGZ4BHNsDAmFeHMPclfN4teLv7ndROIbnoZk3ECVBLbYr0o4S4oNz/NHTJNCfDUEkw0A0ZcMsYaE7ABlILY7jCQcppREUNq/wRjZhZVm4G/ePEyadWq/lXVu7+s1GvzNIroCB2jU+Sja1RHd6iBmoggjZ7QC3p1ps6z8+a8/7YWnPnMIfoD5+MbnpuTkQ==</latexit>

x�3

<latexit sha1_base64="VUVSkb/cZtT3uTlNELaGK0UOEtk=">AAAB9HicbVDLSsNAFJ34rPVVdekmWARBKUlRdFlw47KCfUDTlsl00g6dR5i5KYbQ/3DhRsWt/+LSv3Gi2dh6FpfDOffemXvCmDMDnvflrKyurW9slrbK2zu7e/uVg8O2UYkmtEUUV7obYkM5k7QFDDjtxppiEXLaCae3ud+ZUW2Ykg+QxrQv8FiyiBEMVhoEAsMkjLLH+dAfnA8rVa/m/cBdJn5BqqhAc1j5DEaKJIJKIBwb0zNsTJSMLlypJCain9mCNczLQWJojMkUj2mGhTGpCOfuaf66WfRy8T+vl0B008+YjBOgktgW60UJd0G5+WnuiGlKgKeWYKIZMOKSCdaYgA2gHMR2h4GU04yKGFL7J5gws6jaDPzFi5dJu17zr2re/WW1US/SKKFjdILOkI+uUQPdoSZqIYI0ekIv6NWZOc/Om/P+27riFDNH6A+cj2+Yi5ON</latexit>

x+1

<latexit sha1_base64="b/Tfgfp1P9Nhu3dW6VSugX8ifno=">AAAB9HicbVDLSsNAFJ34rPVVdekmWARBKUlRdFlw47KCfUDTlsl00g6dR5i5KYbQ/3DhRsWt/+LSv3Gi2dh6FpfDOffemXvCmDMDnvflrKyurW9slrbK2zu7e/uVg8O2UYkmtEUUV7obYkM5k7QFDDjtxppiEXLaCae3ud+ZUW2Ykg+QxrQv8FiyiBEMVhoEAsMkjLLH+bA+OB9Wql7N+4G7TPyCVFGB5rDyGYwUSQSVQDg2pmfYmCgZXbhSSUxEP7MFa5iXg8TQGJMpHtMMC2NSEc7d0/x1s+jl4n9eL4Hopp8xGSdAJbEt1osS7oJy89PcEdOUAE8twUQzYMQlE6wxARtAOYjtDgMppxkVMaT2TzBhZlG1GfiLFy+Tdr3mX9W8+8tqo16kUULH6ASdIR9dowa6Q03UQgRp9IRe0Kszc56dN+f9t3XFKWaO0B84H9+aEJOO</latexit>

x+2

<latexit sha1_base64="+0S6IQJ19MDeM8oyhWUt0dz+Ud4=">AAAB6XicbVC7TsNAEFyHVwivACWNRYREgSKbh4AuEg1lEOQhJVF0vpydU8531t0aybLyCRQ0gGj5Ikr+hgu4IWGK1Whmd7WzQSK4Qc/7ckpLyyura+X1ysbm1vZOdXevbVSqKWtRJZTuBsQwwSVrIUfBuolmJA4E6wSTm5nfeWTacCUfMEvYICaR5CGnBK10T4Znw2rNq3s/cBeJX5AaFGgOq5/9kaJpzCRSQYzpGR5RJcMTVypJaDzIbSEap5V+alhC6IRELCexMVkcTN2jmODYzHsz8T+vl2J4Nci5TFJkktoW64WpcFG5szzuiGtGUWSWEKo5curSMdGEok1d6Sd2h8FMsJzFCWb2JhxzM6/aH/jziRdJ+7TuX9S9u/Na47r4RhkO4BCOwYdLaMAtNKEFFCJ4ghd4dSbOs/PmvP+2lpxiZh/+wPn4BjzAjsI=</latexit>a3
<latexit sha1_base64="fbLXRsnZdSc9/7arnIu2lvbc3sg=">AAAB6XicbVC7TsNAEFyHVwivACWNRYREgSKbh4AuEg1lEOQhJVF0vpydU8531t0aybLyCRQ0gGj5Ikr+hgu4IWGK1Whmd7WzQSK4Qc/7ckpLyyura+X1ysbm1vZOdXevbVSqKWtRJZTuBsQwwSVrIUfBuolmJA4E6wSTm5nfeWTacCUfMEvYICaR5CGnBK10HwzPhtWaV/d+4C4SvyA1KNAcVj/7I0XTmEmkghjTMzyiSoYnrlSS0HiQ20I0Tiv91LCE0AmJWE5iY7I4mLpHMcGxmfdm4n9eL8XwapBzmaTIJLUt1gtT4aJyZ3ncEdeMosgsIVRz5NSlY6IJRZu60k/sDoOZYDmLE8zsTTjmZl61P/DnEy+S9mndv6h7d+e1xnXxjTIcwCEcgw+X0IBbaEILKETwBC/w6kycZ+fNef9tLTnFzD78gfPxDT5FjsM=</latexit>

b3
<latexit sha1_base64="fbLXRsnZdSc9/7arnIu2lvbc3sg=">AAAB6XicbVC7TsNAEFyHVwivACWNRYREgSKbh4AuEg1lEOQhJVF0vpydU8531t0aybLyCRQ0gGj5Ikr+hgu4IWGK1Whmd7WzQSK4Qc/7ckpLyyura+X1ysbm1vZOdXevbVSqKWtRJZTuBsQwwSVrIUfBuolmJA4E6wSTm5nfeWTacCUfMEvYICaR5CGnBK10HwzPhtWaV/d+4C4SvyA1KNAcVj/7I0XTmEmkghjTMzyiSoYnrlSS0HiQ20I0Tiv91LCE0AmJWE5iY7I4mLpHMcGxmfdm4n9eL8XwapBzmaTIJLUt1gtT4aJyZ3ncEdeMosgsIVRz5NSlY6IJRZu60k/sDoOZYDmLE8zsTTjmZl61P/DnEy+S9mndv6h7d+e1xnXxjTIcwCEcgw+X0IBbaEILKETwBC/w6kycZ+fNef9tLTnFzD78gfPxDT5FjsM=</latexit>

b3
<latexit sha1_base64="fbLXRsnZdSc9/7arnIu2lvbc3sg=">AAAB6XicbVC7TsNAEFyHVwivACWNRYREgSKbh4AuEg1lEOQhJVF0vpydU8531t0aybLyCRQ0gGj5Ikr+hgu4IWGK1Whmd7WzQSK4Qc/7ckpLyyura+X1ysbm1vZOdXevbVSqKWtRJZTuBsQwwSVrIUfBuolmJA4E6wSTm5nfeWTacCUfMEvYICaR5CGnBK10HwzPhtWaV/d+4C4SvyA1KNAcVj/7I0XTmEmkghjTMzyiSoYnrlSS0HiQ20I0Tiv91LCE0AmJWE5iY7I4mLpHMcGxmfdm4n9eL8XwapBzmaTIJLUt1gtT4aJyZ3ncEdeMosgsIVRz5NSlY6IJRZu60k/sDoOZYDmLE8zsTTjmZl61P/DnEy+S9mndv6h7d+e1xnXxjTIcwCEcgw+X0IBbaEILKETwBC/w6kycZ+fNef9tLTnFzD78gfPxDT5FjsM=</latexit>

b3

<latexit sha1_base64="/hKb8nbbwGa11YISRLM6EUC61XY=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYhA8SNgVRb0FvHiMaB6QhDA7md0Mmccy0yssSz7BgxcVr36RR//GieZiYh2aoqq76eooFdxiEHx5S8srq2vrpY3y5tb2zm5lb79ldWYoa1IttOlExDLBFWsiR8E6qWFERoK1o/HN1G8/MmO5Vg+Yp6wvSaJ4zClBJ92rARlUqkEt+IG/SMIZqcIMjUHlszfUNJNMIRXE2q7lCdUqPvWVVoTKfuEKMTgp9zLLUkLHJGEFkdbmMpr4x5LgyM57U/E/r5thfNUvuEozZIq6FufFmfBR+9M8/pAbRlHkjhBqOHLq0xExhKJLXe6lbofFXLCCyRRzdxOOuJ1X3Q/C+cSLpHVWCy9qwd15tX49+0YJDuEITiCES6jDLTSgCRQSeIIXePXG3rP35r3/ti55s5kD+APv4xuWC479</latexit>na <latexit sha1_base64="/hKb8nbbwGa11YISRLM6EUC61XY=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYhA8SNgVRb0FvHiMaB6QhDA7md0Mmccy0yssSz7BgxcVr36RR//GieZiYh2aoqq76eooFdxiEHx5S8srq2vrpY3y5tb2zm5lb79ldWYoa1IttOlExDLBFWsiR8E6qWFERoK1o/HN1G8/MmO5Vg+Yp6wvSaJ4zClBJ92rARlUqkEt+IG/SMIZqcIMjUHlszfUNJNMIRXE2q7lCdUqPvWVVoTKfuEKMTgp9zLLUkLHJGEFkdbmMpr4x5LgyM57U/E/r5thfNUvuEozZIq6FufFmfBR+9M8/pAbRlHkjhBqOHLq0xExhKJLXe6lbofFXLCCyRRzdxOOuJ1X3Q/C+cSLpHVWCy9qwd15tX49+0YJDuEITiCES6jDLTSgCRQSeIIXePXG3rP35r3/ti55s5kD+APv4xuWC479</latexit>na

<latexit sha1_base64="/hKb8nbbwGa11YISRLM6EUC61XY=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYhA8SNgVRb0FvHiMaB6QhDA7md0Mmccy0yssSz7BgxcVr36RR//GieZiYh2aoqq76eooFdxiEHx5S8srq2vrpY3y5tb2zm5lb79ldWYoa1IttOlExDLBFWsiR8E6qWFERoK1o/HN1G8/MmO5Vg+Yp6wvSaJ4zClBJ92rARlUqkEt+IG/SMIZqcIMjUHlszfUNJNMIRXE2q7lCdUqPvWVVoTKfuEKMTgp9zLLUkLHJGEFkdbmMpr4x5LgyM57U/E/r5thfNUvuEozZIq6FufFmfBR+9M8/pAbRlHkjhBqOHLq0xExhKJLXe6lbofFXLCCyRRzdxOOuJ1X3Q/C+cSLpHVWCy9qwd15tX49+0YJDuEITiCES6jDLTSgCRQSeIIXePXG3rP35r3/ti55s5kD+APv4xuWC479</latexit>na
<latexit sha1_base64="31+iNzjccuzmfZKYelGwC2+TQ+g=">AAAB53icbVDLSgNBEJyNrxhfUY9eFoMgKGEjip4k4MVjAuYBSQizk95kyDyWmV5hWfIFHryoePWTPPo3TnQvJtahKaq6m64OY8EtBsGXV1hZXVvfKG6WtrZ3dvfK+wdtqxPDoMW00KYbUguCK2ghRwHd2ACVoYBOOL2b+51HMJZr9YBpDANJx4pHnFF0UvNsWK4E1eAH/jKp5aRCcjSG5c/+SLNEgkImqLU9y8dMq+jcV1pRJgeZK9TgrNRPLMSUTekYMiqtTWU4808kxYld9Obif14vwehmkHEVJwiKuRbnRYnwUfvzNP6IG2AoUkcoMxw589mEGsrQZS71Y7fDYiogAxlj6m7CCbeLqvtBbTHxMmlfVGtX1aB5Wanf5t8okiNyTE5JjVyTOrknDdIijAB5Ii/k1ePes/fmvf+2Frx85pD8gffxDcTijes=</latexit>

+
<latexit sha1_base64="UG+kFmLkvgZkecgVp5/ktCJ9Pd0=">AAAB53icbVDLSgNBEJz1GeMr6tHLYhA8SNgVRU8S8OIxAfOAJITZSW8yZB7LTK+wLPkCD15UvPpJHv0bJ7oXE+vQFFXdTVdHieAWg+DLW1ldW9/YLG2Vt3d29/YrB4dtq1PDoMW00KYbUQuCK2ghRwHdxACVkYBONL2b+51HMJZr9YBZAgNJx4rHnFF0UjMcVqpBLfiBv0zCglRJgcaw8tkfaZZKUMgEtbZn+ZhpFZ/7SivK5CB3hRqclfuphYSyKR1DTqW1mYxm/qmkOLGL3lz8z+ulGN8Mcq6SFEEx1+K8OBU+an+exh9xAwxF5ghlhiNnPptQQxm6zOV+4nZYzATkIBPM3E044XZRdT8IFxMvk/ZFLbyqBc3Lav22+EaJHJMTckZCck3q5J40SIswAuSJvJBXj3vP3pv3/tu64hUzR+QPvI9vzfSN8Q==</latexit>1

<latexit sha1_base64="OaguHIeqDn0TWfvVpRO3hnFbxmE=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYhA8SNgVRU8S8OIxonlAEsLsZHYzZB7LTK+wLPkED15UvPpFHv0bJ5qLiXVoiqrupqujVHCLQfDlLS2vrK6tlzbKm1vbO7uVvf2W1ZmhrEm10KYTEcsEV6yJHAXrpIYRGQnWjsY3U7/9yIzlWj1gnrK+JIniMacEnXSvBtGgUg1qwQ/8RRLOSBVmaAwqn72hpplkCqkg1nYtT6hW8amvtCJU9gtXiMFJuZdZlhI6JgkriLQ2l9HEP5YER3bem4r/ed0M46t+wVWaIVPUtTgvzoSP2p/m8YfcMIoid4RQw5FTn46IIRRd6nIvdTss5oIVTKaYu5twxO286n4QzideJK2zWnhRC+7Oq/Xr2TdKcAhHcAIhXEIdbqEBTaCQwBO8wKs39p69N+/9t3XJm80cwB94H9+ZD48D</latexit>nb

(a) The Real ER Dataset (b) Compute Similarity Vectors (c) Learn Distributions (d) Sample Similarity Vectors (e) Synthesize Entities (f) The Synthesized ER Dataset

<latexit sha1_base64="PEG0jCkX6O+4YW10AxCqSMkwLQM=">AAAB+HicbVC7TsMwFHXKq5RXgJElokJiQFWCQMBWxMJYJPqQmipyXKe16tiRfVMpRPkTBhZArPwJI3+DW7LQcoaro3PuvfY9YcKZBtf9tiorq2vrG9XN2tb2zu6evX/Q0TJVhLaJ5FL1QqwpZ4K2gQGnvURRHIecdsPJ3czvTqnSTIpHyBI6iPFIsIgRDEYKbPs2yP0Yw1hHuc5EUQR23W24czjLxCtJHZVoBfaXP5QkjakAwrHWfc1GRIrozBFSYBIPclOwgqLmp5ommEzwiOY41jqLw8I5mT++6M3E/7x+CtH1IGciSYEKYlqMF6XcAenMznOGTFECPDMEE8WAEYeMscIETAg1PzE7NGSc5jROIDN/gjHTi6rJwFu8eJl0zhveZcN9uKg3b8o0qugIHaNT5KEr1ET3qIXaiKApekav6M16sl6sd+vjt7VilTOH6A+szx+Wr5VL</latexit>

Asyn
<latexit sha1_base64="5MZKXG0iPOF8PJeMAl/ScoAa6Ds=">AAAB+HicbVC7TsMwFHXKq5RXgJElokJiQFWCQMBWwcJYJPqQmipyXKe16tiRfVMpRPkTBhZArPwJI3+DW7LQcoaro3PuvfY9YcKZBtf9tiorq2vrG9XN2tb2zu6evX/Q0TJVhLaJ5FL1QqwpZ4K2gQGnvURRHIecdsPJ3czvTqnSTIpHyBI6iPFIsIgRDEYKbPs2yP0Yw1hHuc5EUQR23W24czjLxCtJHZVoBfaXP5QkjakAwrHWfc1GRIrozBFSYBIPclOwgqLmp5ommEzwiOY41jqLw8I5mT++6M3E/7x+CtH1IGciSYEKYlqMF6XcAenMznOGTFECPDMEE8WAEYeMscIETAg1PzE7NGSc5jROIDN/gjHTi6rJwFu8eJl0zhveZcN9uKg3b8o0qugIHaNT5KEr1ET3qIXaiKApekav6M16sl6sd+vjt7VilTOH6A+szx+YQZVM</latexit>

Bsyn

Step-3: Label All Pairs

#

Fig. 3. Solution overview of SERD.

based on the probabilities of their similarity vectors belonging
to M-distribution or N -distribution (Figure 3(f)).

Remarks. (1) If Asyn (resp., Bsyn) has reached the number of
requirement, i.e., na (resp., nb), there is no need to synthesize
entities for Asyn (resp., Bsyn). In this case, we only sample
entity e from Asyn (resp., Bsyn) in step S2-1 and synthesize
entity e′ for Bsyn (resp., Asyn) in step S2-3 and step S2-4. (2)
How to synthesize a fake A-entity a in the beginning of step
S2 is discussed in Section IV-B2. (3) We also present an entity
rejection technique in Section V, which rejects the synthesized
entities that may destroy the O-distribution.

Example 4: Figure 3(e) shows the step S2 of Algorithm
SERD. The circles are entities (the left and right circles are
synthesized entities in Asyn and Bsyn respectively) and the
arrows denote sampled similarity vectors (the blue and yellow
arrows denote matching and non-matching similarity vectors
sampled from theM- and N -distributions respectively). Sup-
pose na ≤ nb in this case.

At first, Asyn = Bsyn = {}, we synthesize a new entity
a1 for Asyn. Then we begin the iterations of S2: (1) We first
sample a synthesized entity e = a1 from Asyn = {a1} (S2-
1); after that, we sample a similarity vector from Oreal, and
suppose it is x−

1 , which means that x−1 is sampled from N -
distribution (S2-2). We then synthesize an entity b1 that does
not match a1 and the similarity vector of a1 and b1 is x−

1

(S2-3). Afterwards, we add b1 to Bsyn, and add (a1, b1) to
Nsyn (S2-4). After this iteration, Asyn = {a1}, Bsyn = {b1}.
(2) In the second iteration, we first sample e = b1 from
Asyn∪Bsyn = {a1, b1} (S2-1); after that, we sample a similarity
vector from Oreal, and suppose it is x+1 , which means that x+

1

is sampled from M-distribution (S2-2). We then synthesize
an entity a2 that matches b1 and the similarity vector of b1
and a2 is x+

1 (S2-3). Afterwards, Asyn = {a1, a2}, Bsyn =
{b1},Msyn = {(a2, b1)} (S2-4). (3) In the third iteration, we
sample e = a2 from Asyn ∪ Bsyn = {a1, b1, a2} and sample
x−
2 from Oreal, then synthesize b2 by a2 and x−2 . Afterwards,

Asyn = {a1, a2}, Bsyn = {b1, b2}, Nsyn = {(a1, b1), (a2, b2)}.
We repeat these steps until |Asyn| = na and |Bsyn| = nb. 2

IV. ER SYNTHESIS FRAMEWORK

In this section, we provide more details for our ER synthesis
framework. We start by describing how to learn the M-
and N -distributions from Ereal at step S1 (Section IV-A).
We then discuss how to synthesize a new entity at step S2
(Section IV-B). Moreover, we present how to label the entity
pairs that are not yet labeled at S3 (Section IV-C).

A. Learning M- and N -Distributions

Given the similarity vectors X+
real/X

−
real of matching/non-

matching pairs in Mreal/Nreal, we aim to learn the M- and
N -distributions. We follow ZeroER [12] which models the
O-distribution as a Gaussian Mixture Model (GMM). We
also model the M- and N -distributions in O-distribution as
multivariate GMMs. The PDF of M-distribution is pm(x) =∑g

i=1 πipi(x;µi,Σi), where the parameter Θ includes:
1) g is the number of normal distributions;
2) πi is proportion of the i-th normal distribution, with∑g

i=1 πi = 1; and
3) µi,Σi, i ∈ [1, g], where pi ∼ N(µi,Σi).
The N -distribution is similar to the M-distribution.
Next, we describe how to learn theM-distribution (i.e., Θ)

by X+
real, and the learning process of N -distribution is similar.

Estimating the Parameters of M-Distribution. First, the
optimal number of normal distributions g can be derived
by minimizing the Akaike information criterion (AIC) [27]
of X+

real. Then, for X+
real = {x1, x2, ..., xn}, we want to

compute the Θ that maximizes the log likelihood in Equation 4
as shown below, where the Expectation-Maximization (EM)
algorithm [28] can be applied to solve the problem.

logL(Θ|X+
real) = log

n∏
i=1

g∑
j=1

πjpj(xi|µj ,Σj) (4)

The EM algorithm is an iterative process. At first, we randomly
initialize µk,Σk, πk as µ

(0)
k ,Σ

(0)
k , π

(0)
k , k ∈ [1, g]. Then we

begin the iterations. In iteration t (t ≥ 1), there are two steps:
1) Expectation (E-step): evaluate the possibility that xi be-

longs to the k-th normal distribution given the parameter
estimates from the last iteration (i.e., iteration t− 1):

γ
(t−1)
i,k =

π
(t−1)
k pk(xi|µ(t−1)

k ,Σ
(t−1)
k)∑g

j=1 π
(t−1)
j pj(xi|µ(t−1)

j ,Σ
(t−1)
j)

(5)

2) Maximization (M-step): re-estimates parameters by max-
imizing Equation 4, then we can get the new parameter
estimates for iteration t:

µ
(t)
k =

1∑n
i=1 γ

(t−1)
i,k

n∑
i=1

γ
(t−1)
i,k xi

Σ
(t)
k =

1∑n
i=1 γ

(t−1)
i,k

n∑
i=1

γ
(t−1)
i,k (xi − µ

(t)
k)(xi − µ

(t)
k)⊤

π
(t)
k =

1

n

n∑
i=1

γ
(t−1)
i,k (6)

5

The above iteration repeats until Equation 4 is converged.

Estimating the Parameters of N -Distribution. The N -
distribution is estimated similarly, from X−

real.

B. Synthesizing Entities

As discussed in Section III, Equation 2 is intractable to
solve. Thus, we cannot generate all entities at once, with their
pairs satisfying the Oreal. Therefore, we propose a heuristic
sampling approach that samples from Oreal iteratively. In each
iteration, we first sample a synthesized entity e and then
sample a similarity vector x from Oreal, based on which we
synthesize another entity e′ such that the similarity vector
between the entity pair (e, e′) is x.

1) How to synthesize a new entity from an existing entity :
Next, we discuss how to synthesize e′ from a sampled entity e
and a sampled similarity vector x. Let x[i] denote the desired
similarity of e and e′ on column Ci. We synthesize e′ by
synthesizing the values of different columns, i.e., e′[Ci], s.t.
x[i] = fi(e[Ci], e

′[Ci]), i ∈ [1, l]. Next, we discuss how to
synthesize e′[Ci] based on the column type of Ci.

Numeric. If data in column Ci is numerical, we can simply
compute e′[Ci] based on the similarity function fi and e[Ci].

For example, suppose that we have a numerical column
year, and x[i] = 1 − |e[Ci] − e′[Ci]|/10, where 10 is the
difference between the maximum value and the minimum
value of year. Then given e[Ci] = 2008 and x[i] = 0.8, we can
compute that e′[Ci] = 2008±(1−x[i])×10, i.e., e′[Ci] = 2006
or e′[Ci] = 2010, where we just sample one.

Categorical. If Ci is categorical, we consider that there are
finite values in Ci, e.g., gender and venue, and thus we do not
synthesize new values beyond existing ones in Ci. For ease of
representation, we abuse Ci a little to denote the set of values
in the column. Therefore, given e[Ci] and x[i], we iterate
∀e′[Ci] ∈ Ci, select the one such that x[i] = fi(e[Ci], e

′[Ci]).
If we cannot find one satisfying the similarity requirement, we
just return the e′[Ci] so that the similarity between e[Ci] and
e′[Ci] is the closest to x[i] among all values in Ci.

For example, suppose that we have a categorical
column venue, and the similarity function fi is the 3-gram
jaccard similarity. Given e[Ci]=“Sigmod Conference”,
x[i] = 0.23 and Ci={“Sigmod”, “International
Conference on Management of Data”, “VLDB”},
we have fi(“Sigmod Conference”, “Sigmod”)=0.29
that is the closest to 0.23. Hence, we return “Sigmod
Conference” as the synthesized categorical value e′[Ci].

Date. Date type has a similar synthesizing process with the
numerical type.

String/Text. The similarity functions on string/text columns
(e.g., paper title, paper authors, and product description) are
mainly string similarity functions, e.g., Jaccard similarity,
normalized edit distance based similarity. The challenge of
synthesizing this type of data is that we need to both keep
the similarity and capture the semantic. Clearly, the task

of synthesizing a string from another string is Sequence-to-
Sequence generation, on which transformer [23] is a natural
fit (see Section VI for more details).

2) Cold start: As discussed in Section III, initially, we need
one fake entity to bootstrap. In practice, manually preparing
one entity is with low human cost. We can also synthesize a
value for each column Ci separately. Next, we discuss how to
synthesize a value based on the column type of Ci.

Numeric, Categorical, Date. We can randomly sample a value
from the range or set of column Ci.

String/Text. We can pick a string which is not in the real data
of column Ci from the domain knowledge of column Ci. For
example, for the column paper title, we can randomly pick a
paper title from Google Scholar.

Besides manually preparing an entity, we can also use the
GAN [29], [15], [30], [17] model to synthesize a new entity.
The GAN model includes two components: the generator G
and the discriminator D. The generator G takes as input a
random noise z, and uses deconvolution layers to transform
z to a fake entity in a matrix form. The outputs of different
neurons of G correspond to different attribute values of the
entity. The discriminator D is a binary classifier, and the
training data of D includes real entities labeled by 1 as well as
fake entities synthesized by G and labeled by 0. The input of
D is an entity in a matrix form. D uses convolution layers and
a sigmoid function to transform an entity to a 0/1 label. G
and D play an adversarial minimax game during the training
process: G attempts to synthesize fake entities which will be
classified as real by D, and D attempts to correctly classify
real and fake entities. After the GAN model is trained, we
can use G to synthesize new fake entities that resemble real
entities.

C. Labeling All Pairs

Recap that the S2 part of algorithm SERD also synthesizes
the matching or non-matching relationship between the two
entities e and e′, which is regarded as a label in the dataset.
If x is from M-distribution, e and e′ are matching, i.e.,
(e, e′) ∈ Msyn; otherwise, (e, e′) ∈ Nsyn. However, there
are also many entity pairs that we do not know whether
they are matching or not. For each of these entity pairs,
we calculate its similarity vector x, and then compute the
posterior probability Pm(x) that x belongs to M-distribution
(Pm(x) = πpm(x)

πpm(x)+(1−π)pn(x)) and the posterior probability
Pn(x) that x belongs to N -distribution (Pn(x) = 1−Pm(x)).
If Pm(x) ≥ Pn(x), we label it as a matching pair; otherwise,
we label it as a non-matching pair.

Example 5: After na entities in Asyn and the nb entities in
Bsyn are synthesized in Figure 3(e), there are many entity pairs
which are not in Msyn ∪ Nsyn, i.e., {(a1, b2), (a3, bnb

), ...}.
For each of these entity pairs, we compute Pm(x) and Pn(x),
where x is the similarity vector of the entity pair, then we
label the pair as a matching pair if Pm(x) ≥ Pn(x), and non-
matching one otherwise. 2

6

V. SYNTHESIZED ENTITY REJECTION

Our goals of synthesized datasets are: (1) Indistinguishable
entities and (2) Performance preservation (Section I).

For (1), the discriminator D of GAN, a binary classier,
is trained for distinguishing real and fake entities. Given a
synthesized entity e′, if D(e′) returns true, then the synthesized
e′ is considered to be indistinguishable; otherwise, D(e′)
returns false, which means that this entity will be rejected.

For (2), its essential goal is to minimize the difference
between Osyn and Oreal, i.e., Equation 3. The step S2 (Sec-
tion IV-B) in our proposed heuristic solution just guarantees
that the sampled entity pairs achieve the goal well because
they are sampled from Oreal. However, Osyn is not only
computed by the sampled pairs, but also all the other pairs
across generated pairs in S3 (Section IV-C). One hidden issue
is that, all matching/non-matching pairs in the synthesized
entities may not strictly follow Oreal, which is not ideal for our
synthesized ER dataset. To address this issue, we propose an
entity rejection technique to check whether each synthesized
entity will make the Osyn far from Oreal on the fly. If so, we
reject this synthesized entity and re-synthesize another entity
such that the Osyn can be gradually closer to the Oreal.

Putting them together, if a synthesized entity e′ is rejected
by either case (1) or case (2), we re-execute the process of
synthesizing an entity (i.e., steps S2-1 to S2-5 of SERD), until
the synthesized entity can pass both checks. Note that e′ will
not always be rejected, because we can adjust the strictness
of rejection by tuning some parameters for both (1) and (2).

Entity Rejection by Discriminator (Case 1). We use the
discriminator D of the GAN model in Section IV-B2 to judge
whether a synthesized entity e′ resembles a real entity. We
can input e′ to D, and then the sigmoid function of D can
output the probability of e′ being predicted to be real: if the
probability is less than β, we just reject it; else, accept it,
where β ∈ [0, 1] is a parameter. And e′ will not always be
rejected by D: if β is infinitely close to 0, D will predict e′

as real, then e′ will be accepted.

Entity Rejection by Distribution (Case 2). The idea of entity
rejection by distribution is that once an entity e′ is synthesized,
potentially a number of new entity pairs are generated. If the
current Osyn is moving far away from Oreal, we reject e′.
Otherwise, we add it to our synthesized dataset.

Specifically, in step S2, every time we sample an entity e
from Asyn∪Bsyn and a vector x from Oreal, a new entity e′ will
be synthesized and an entity pair (e, e′) will be synthesized. e
and e′ belong to different tables. We use Te(T

′
e) to denote the

table containing e(e′). The pair (e, e′) definitely obeys Oreal

because it is sampled from the distribution, but the potential
generated pairs (e′′, e′),∀e′′ ∈ Te are not. Moreover, they
may even destroy the distribution of the synthesized similarity
vectors, making the Osyn far away from the Oreal. In this case,
we should reject e′. Next, we first introduce how to compute
Osyn given synthesized entities in Asyn and Bsyn, and then
describe how to update Osyn every time e′ is synthesized.

a) Compute Osyn.: We denote the similarity vectors of
entity pairs in Esyn as Xsyn, which is utilized to compute Osyn.
In the beginning, Asyn and Bsyn are small, and Xsyn can be
computed efficiently:

Xsyn = {x(a,b) | (a, b) ∈ Asyn ×Bsyn}

Similar to Equation 6, the computation of Osyn needs the
labels of each pair. Unlike X+

real and X−
real, other entity pairs

in Xsyn do not have labels, so we assign labels to them based
on Oreal. X+

syn(X−
syn) denotes the vectors of matching(non-

matching) entity pairs in Xsyn, which is computed as follows,

X+
syn = {x |Pm(x) ≥ Pn(x), x ∈ Xsyn}

X−
syn = {x |Pn(x) > Pm(x), x ∈ Xsyn}

(7)

Then we compute π as
|X+

syn|
|Xsyn| , and M/N -distributions

following Equation 6, and thus Osyn can be obtained.
b) Update Osyn.: Once e′ is synthesized, more entity

pairs between e′ and entities in Te are also synthesized. We
denote the set ∆Xsyn as vectors of these pairs,

∆Xsyn = {x(a,b) | a = e′, b ∈ Te}

To update Osyn, we first compute ∆X+
syn similar to Equation 7,

∆X+
syn = {x̂ |Pm(x̂) ≥ Pn(x̂), x̂ ∈ ∆Xsyn}

∆X−
syn can also be computed similarly.

Next we describe how to update π and M/N -distributions
of Osyn. Obviously, π =

|X+
syn|+|∆X+

syn|
|Xsyn|+|∆Xsyn| ; Then we calculate the

new M-distribution of Osyn when ∆X+
syn is added to X+

syn.
By following Equation 6, we can incrementally compute the
updated µ̂

(t)
k , Σ̂

(t)
k , π̂

(t)
k by adding the corresponding part of x̂

in ∆X+
syn to Equation 6. And at first, we compute γ̂

(t−1)
i,k for

x̂ in ∆X+
syn:

γ̂
(t−1)
i,k =

π
(t−1)
k pk(x̂i|µ(t−1)

k ,Σ
(t−1)
k)∑g

j=1 π
(t−1)
j pj(x̂i|µ(t−1)

j ,Σ
(t−1)
j)

(8)

Then we compute the updated µ̂
(t)
k , Σ̂

(t)
k , π̂

(t)
k (suppose

|X+
syn| = n, and |∆X+

syn| = n̂):

µ̂
(t)
k =

1
n∑

i=1
γ
(t−1)
i,k +

n̂∑
i=1

γ̂
(t−1)
i,k

(
n∑

i=1

γ
(t−1)
i,k xi +

n̂∑
i=1

γ̂
(t−1)
i,k x̂i

)

Σ̂
(t)
k =

n∑
i=1

γ
(t−1)
i,k (xi−µ̂

(t)
k)(xi−µ̂

(t)
k)⊤+

n̂∑
i=1

γ̂
(t−1)
i,k (x̂i−µ̂

(t)
k)(x̂i−µ̂

(t)
k)⊤

n∑
i=1

γ
(t−1)
i,k +

n̂∑
i=1

γ̂
(t−1)
i,k

π̂
(t)
k =

1

n+ n̂

(
n∑

i=1

γ
(t−1)
i,k +

n̂∑
i=1

γ̂
(t−1)
i,k

)
(9)

In this way, we do not need to re-initialize the parameters
of the Osyn to random numbers and compute the parameters of
Osyn iteratively, which is very inefficient because we have to
compute the similarity vectors of all synthesized entity pairs in
Equation 6. Instead, we initially set the parameters of Osyn as
the parameters before ∆X+

syn is added to X+
syn, and update

7

Bucket 1

Bucket 2

Bucket k

… …

Input String s

Sample

Output
String s′

Similarity sim

Training

Inference

Candidate Output
Strings s′ 1, s′ 2, s′ 3, . . .

0.05
0.08
0.13
0.19

… … …
0.91
0.94

String Pairs
{(s, s′ , sim)}Domain Knowledge s′ s′ sim

Choose Model

Fig. 4. Training and inference for string synthesis.

the parameters by Equation 9, so we can get the updated
parameters of Osyn quickly. And similarly, we can compute the
new N -distribution of Osyn, and then we can get the updated
Osyn, denoted by O′

syn.
c) Entity Rejection by Distribution.: In this part, we dis-

cuss that given O′
syn, whether we reject the newly synthesized

entity e′. The intuition is that we should reject e′ if ∆Xsyn

makes Osyn far away from Oreal, i.e., the JSD between O′
syn

and Oreal is much bigger than the JSD between Osyn and Oreal:

JSD(O′
syn, Oreal) > α JSD(Osyn, Oreal) (10)

where α > 0 is a parameter, and α = 1 by default. Therefore,
every time we synthesize an entity e′, compute ∆Xsyn, re-
compute Osyn, and then check whether Equation 10 holds. If
yes, we reject e′; otherwise, we add e′ to T ′

e.

Remarks. (1) The calculation of ∆Xsyn is time-consuming
when Te is getting larger. Hence, we can sample t entities
from Te, and then calculate the similarity vectors between e′

and these t sampled entities as ∆Xsyn. (2) e′ will not always
be rejected by Equation 10 because we can tune α: if α is close
to +∞, Equation 10 does not hold, then e′ will be accepted.

VI. SYNTHESIZING TEXTUAL VALUES

Recap that we want to synthesize an entity e′ from a
sampled entity e and a sampled similarity vector x. For a
string/text column Ci, we should synthesize a string e′[Ci]
such that x[i] = fi(e[Ci], e

′[Ci]). Furthermore, e′[Ci] should
be semantically informative so that one cannot tell that it is
a synthesized value. For example, suppose e[Ci] is “Forest
Family Restaurant”, the similarity function is 3-gram
jaccard similarity, and x[i] is 0.73, we can synthesize e′[Ci]
as “De′s Forest Family Restaurant”, whose simi-
larity with e[Ci] is 0.71. And for ease of presentation, we
use s, s′, sim, f to replace e[Ci], e

′[Ci], x[i], fi, and then our
problem can be represented as: given a string s, a similarity
function f and a similarity score sim, we aim to synthesize
another string s′ such that sim = f(s, s′).

Our Solution. We train a deep learning (DL) model to solve
this problem by taking as input s and sim and outputting s′,
i.e., learning a mapping function s′ = F(s, sim). The DL
model is trained by a large number of string pairs associated
with their similarity scores. Due to the powerful learning
capacity of DL, we can synthesize strings that conform to
the similarity requirements and have semantic meanings.

Algorithm 1: Training Transformer Model Mi Differential
Privately
Input: Training data: string pairs {(s, s′)} whose

similarity scores fall in Ii, noise scale σ, gradient
norm bound V , learning rate η

Output: Differentially Private Transformer Model Mi

initialize the parameters θ of Mi;1

for number of training iterations do2

sample a minibatch of training examples3

{(s1, s′1), (s2, s′2), ..., (sJ , s′J)};
J ← the size of minibatch;4

L ←Mi.forward({(s1, s′1), (s2, s′2), ..., (sJ , s′J)});5

for j ← 1 to J do6

g(sj , s
′
j)← ∇θL(θ, sj , s′j);7

g(sj , s
′
j)← g(sj , s

′
j)/max(1, ∥g(sj , s′j)∥2/V);8

g̃ ← (
∑

j g(sj , s
′
j) +N (0, σ2V 2I))/J ;9

θ ← θ − ηg̃;10

return Mi;11

We formulate this task as a Sequence-to-Sequence
(Seq2Seq) task which is commonly used in machine trans-
lation. There are many deep learning models [31], [23], [32]
for Seq2Seq task. Among these models, transformer [23] has
attracted lots of attention and achieved state-of-the-art results
in many Seq2Seq tasks [23], [33], [34]. So we use transformer
for our task. In Seq2Seq task, there are usually an encoder and
a decoder. The typical transformer model encodes a string s
as a hidden vector and decodes it to another string s′. In our
problem, we have an additional input sim.

To solve this problem, we propose to train multiple trans-
former models for different similarity buckets. For sim ∈
[0, 1], we split the interval [0, 1] to k disjoint and succes-
sive intervals (buckets) I1, I2, ..., Ik. We then train k models
Mi, 0 ≤ i ≤ k, where Mi is for pairs whose similarity scores
fall in the interval Ii. The training data for model Mi is
the string pairs in the background data of column Ci whose
similarity scores are in Ii. Hopefully Mi can synthesize a
string s′ whose similarity score with s falls in the interval Ii
when the input is s. The intuition behind this idea is that: two
strings (e.g., s and s′) can usually be converted to each other
by some underlying rules (e.g., exchange the name order of
authors). The rules of high similarities (e.g., > 0.9) should be
different from that of low similarities (e.g., < 0.1), and the
similar similarities may share similar rules. Since each model
does not need sim as input, the challenge of the above method
can be resolved. Moreover, Mi can learn the underlying rules
for similarity sim ∈ Ii, apply them to s, and finally synthesize
s′ whose similarity with s is close to sim.

Figure 4 shows the training (top) and inference processes
(bottom) for string synthesis, which will be discussed next.

Training. Recall that we use background data to train the
model for the third desiderata of synthesized ER datasets, i.e.,
privacy preserving. For a textual/text column Ci, we first crawl
some strings which belong to the domain of Ci from domain
knowledge. For example, for the column paper title, we can
crawl some paper titles (i.e., strings) from the website. Then

8

domain input string s sim output string s′ sim′

authors (DBLP-ACM) Jennifer Bernstein, Meikel Stonebraker, Guojing Lin 0.55 M. Stonebraker, G. Lin, Jennifer Bernstein 0.56
name (Restaurant) Forest Family Restaurant 0.73 De’s Forest Family Restaurant 0.71

address (Restaurant) 6th street around broadway 0.4 6th street between columbus avenue and broadway 0.4
title (Walmart-Amazon) Asus 15.6 Laptop Intel Atom 2gb Memory 32gb Flash 0.13 Lenovo Thinkpad 15.6 Laptop 0.15

Sone Name (iTunes-Amazon) I’ll Be Home For The Holiday 0.09 I’ll Think Of You When Raining 0.11

TABLE I
EXAMPLES OF SYNTHESIZED STRINGS.

we enumerate the strings in pairs (i.e., {(s, s′)}), calculate the
similarities of these string pairs, and divide them into buckets
by their similarities. Finally, we train models for different
similarity intervals (buckets).

Algorithm 1 shows how to train transformer model Mi

differential privately. The input includes the training data of
Mi: the string pairs {(s, s′)} in the background data whose
similarity scores are in Ii. We first initialize the parameter θ
of Mi (line 1), then iteratively train Mi. In each iteration,
we first sample J string pairs {(s1, s′1), (s2, s′2), ..., (sJ , s′J)}
from the training data as a minibatch (line 3-4), then call
the forward function of Mi and compute the loss L (line
5). Then compute the gradient g(sj , s

′
j) for each string pair

(sj , s
′
j) in the sampled minibatch (line 7), clip g(sj , s

′
j) by

L2 norm with threshold V (line 8), add Gaussian noises to
the clipped gradients (line 9), and update the parameter θ of
Mi by gradient descent (line 10). After all training iterations
are finished, return the trained differentially private Mi.

Inference. After multiple transformer models are trained, for
given s and sim, we first check which interval that sim falls
in. Suppose sim ∈ Ii, we input s to the model Mi, and then
we can get several different candidate output strings (denoted
as s′1, s

′
2, s

′
3, ...) due to the sampling process when the decoder

synthesizes a token. Then we compute the similarity of s and
s′1, s

′
2, s

′
3, ..., return the string whose similarity with s is the

closest to sim as s′.

Example 6: Table I shows some examples of synthesized
strings for different domains, where s is the input string, sim
is the input similarity, s′ is the synthesized string, and sim′

is the similarity of s and s′. For example, for the second
row of Table I, the input of transformer model is “Forest
Family Restaurant” and sim = 0.73, and the output
is “De′s Forest Family Restaurant”, where sim′ =
3 gram jaccard(“Forest Family Restaurant”, “De
′s Forest Family Restaurant”) = 0.71. We can
see that sim′ is very close to sim, and the synthesized s′

captures the semantic information. 2

VII. EXPERIMENT

Datasets. We use 4 real-world datasets which are widely used
by existing entity resolution works [19], [9], [10]. Table II
shows the statistics of the 4 datasets used in our experiment,
where |Areal| and |Breal| are the sizes of the two tables, |Mreal|
is the number of matching pairs in this dataset, and #-Col is the
number of columns. (1) DBLP-ACM is a dataset of research
papers. There are two relation tables: DBLP (2616 tuples) and
ACM (2294 tuples). The dataset has 2224 matching entity

https://dbs.uni-leipzig.de/file/DBLP-ACM.zip

pairs. It has 2 textual attributes: title, authors; 1 categorical at-
tribute: venue; and 1 numeric attribute: year. (2) Restaurant is
a restaurant dataset with one table which contains 864 entities.
And for the case that Ereal only contains one table, we treat this
table as both Areal and Breal, and there are 112 matching pairs
except for the entity pair that matches itself. The dataset has 2
textual attributes: name, address; and 2 categorical attributes:
city, flavor. (3) Walmart-Amazon is a dataset about electronic
product. There are two relation tables: Walmart (2554 tuples)
and Amazon (22074 tuples). The dataset has 1154 matching
entity pairs. It has 3 textual attributes: modelno, title, descr;
1 categorical attribute: brand; and 1 numeric attribute: price.
(4) iTunes-Amazon is a dataset about music albums. There
are two relation tables: iTunes (6907 tuples) and Amazon
(55922 tuples). The dataset has 132 matching entity pairs. It
has 5 textual attributes: song name, artist name, album name,
genre, copyright; 1 numeric attribute: price; 2 date attributes:
time, released.

Comparisons. We test 3 methods: (1) SERD; (2) SERD-
is SERD but without entity rejection to show the necessity
of entity rejection; and (3) EMBench [13], [14] synthesizes
fake entities by modifying (e.g., abbreviation, misspelling, syn-
onyms, etc.) real entities in Ereal, and two synthesized entities
are matching (resp., non-matching) if their corresponding real
entities are matching (resp., non-matching).

Settings. For categorical and textual columns, we use the
3-gram jaccard similarity to calculate their similarities; and
for a numeric column C, we use 1 − |c1−c2|

max (C)−min (C) to
calculate the similarities of c1 and c2, where c1, c2 are two
values on column C, and max (C),min (C) are the maximum
and minimum values on column C. We bootstrap SERD and
SERD- by synthesizing the first entity automatically using the
GAN model without any human cost, and we use the Daisy
repository (https://github.com/ruclty/Daisy) of Fan et al. [15]
to train the GAN model. This GAN model is also used to
reject entities. We set the α of Equation 10 as 1, the β of the
discriminator as 0.6, the number of candidate output strings
(s′) in Section VI as 10, and the number of similarity intervals
as 10 in the experiment. We use the typical transformer model
from the Attention is All You Need paper [23]. The token of
the transformer is character. The input dimension is the size of
the vocabulary (i.e., the distinct number of characters) and the
hidden dimension of the embedding layer is 256. The encoder
(resp., decoder) contains 3 encoder (resp., decoder) layers and
the multi head attention layer has 8 heads. The dropout rate
of transformer is 0.1.

http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz
http://pages.cs.wisc.edu/∼anhai/data/corleone data/products/walmart.csv
https://pages.cs.wisc.edu/∼anhai/data1/deepmatcher data/Structured/

iTunes-Amazon/

9

Dataset Domain |Areal| |Breal| #-Col |Mreal|
DBLP-ACM scholar 2616 2294 4 2224
Restaurant restaurant 864 864 4 112

Walmart-Amazon electronics 2554 22074 5 1154
iTunes-Amazon music 6907 55922 8 132

TABLE II
STATISTICS OF DATASETS.

Environment. All experiments are conducted on a MacBook
Pro with 16 GB 2667 MHz RAM and 2.3 GHz Intel Core i9
CPU, running OS X Version 11.1.

Exp-1: User Study

In this section, we want to show that (S1) users cannot tell
that whether a synthesized entity is from Ereal or Esyn; (S2) the
synthesized matching entity pairs are really matching and the
synthesized non-matching entity pairs are really non-matching.
We ask humans to answer questions for user studies S1 and
S2 and verify whether our synthesized ER datasets are good.

Questions. For user study S1, we sample 500 entities from
each synthesized dataset, and for each entity, ask the partic-
ipants the question Q1: “please choose whether the entity is
a real one” with three choices {disagree, neutral, agree}. For
user study S2, we sample 500 synthesized matching entity
pairs and 500 synthesized non-matching entity pairs from
dataset DBLP-ACM, then mix these 1000 sampled entity
pairs, and for each entity pair, ask the question Q2: “please
choose whether the entity pair is matching or non-matching”
with two choices {matching, non-matching}. We sample 100,
500, 100 matching and 100, 500, 100 non-matching entity
pairs from dataset Restaurant, Walmart-Amazon, iTunes-
Amazon respectively.

Participants. We employ 288 crowdsourcing workers from a
crowdsourcing platform Appen (https://appen.com). The Hu-
man Intelligence Task (HIT) approval ratings of these workers
are bigger than 90%. For question Q1 (resp., Q2), we ask 5
(resp., 3) workers to answer and aggregate their answers by
majority voting.

User Study S1. Figure 5(a) shows the proportion of different
answers among all questions for the 4 datasets. About 90% of
synthesized entities resemble real entities (i.e., get the answer
Agree), and less than 4% of the synthesized entities do not
resemble real entities (i.e., get the answer Disagree). The
experiment results show that our method can synthesize fake
entities that resemble real entities because our transformer
models can synthesize semantically informative strings and
the discriminator of the GAN model rejects these synthetic
entities which do not resemble real entities.

User Study S2. Figure 5(b) shows the proportion of different
answers for synthesized matching and non-matching entity
pairs. We show a matrix for each dataset, where the row
is the label of the synthesized entity pair and the column is
the label by workers, and the cell value is the proportion of
entity pairs whose synthetic labels are the row value and the
labels by users are the column value. For example, for DBLP-
ACM, there are 500 × 96.4% = 482 synthesized matching
entity pairs labeled as matching. For the synthesized non-
matching entity pairs, workers all label them as non-matching,

Neutral 5 6 8 7

Agree 94 93 89 91

DBLP-ACM Restaurant Walmart-Amazon iTunues-Amazon

25
50
75

100
Disagree Neutral Agree

0 1
0 100.0 0.0

1 3.6 96.4

Proportion (%
)

0

100

(b) User study S2
Restaurant Walmart-Amazon

(a) User study S1

Syn

Label

DBLP-ACM

0 1
0 100.0 0.0

1 6.0 94.0

Label
0 1

0 100.0 0.0

1 4.8 95.2

Label

DBLP-ACM Restaurant

100
75
50
25
0

Proportion (%
)

Walmart-Amazon iTunes-Amazon

0 1
0 100.0 0.0

1 5.0 95.0

Label

iTunes-Amazon

5

Fig. 5. User study.

because the synthesized non-matching entity pairs are usually
not similar and the workers will not label them as matching.
For the synthesized matching entity pairs, there are ≥ 94%
of them labeled as matching, because the transformer models
can synthesize very similar strings for matching entity pair
synthesis, and then the workers will label them as matching.

Exp-2: Model Evaluation

In this section, we want to show that Msyn and Mreal have
similar performance on the same test set, and Msyn can be
used directly on the real test set. Basically, the ML models for
ER can be categorized into two types: traditional ML models
(e.g., random forest, SVM, etc.) and deep learning models. To
illustrate the applicability of our method, we test both models.
For the traditional ML models, we evaluate the performance
of the models trained by the Magellan system [9], [35]; for
the deep learning models, we evaluate the performance of the
models trained by the Deepmatcher system [10].

Metrics. To evaluate the performance of ML model trained by
either real or synthesized ER dataset, we use the model to test
on a test set and report the model performance by precision,
recall, and F1 score. The closer the performance of the model
trained by the synthesized ER dataset is to the performance
of the model trained by the real ER dataset, the better the
synthesized ER dataset is. Suppose TN is the number of entity
pairs that are actually non-matching and predicted as non-
matching, FP is the number of entity pairs that are actually
non-matching but predicted as matching, FN is the number
of entity pairs that are actually matching but predicted as non-
matching and TP is the number of entity pairs that are actually
matching and predicted as matching, then precision= TP

TP+FP ,
recall= TP

TP+FN , F1 score= 2×precision×recall
precision+recall .

We synthesize ER datasets Esyn which are the same sizes
as the real ER datasets by different methods (SERD and
SERD-) for the 4 datasets. To test ML model (both Magellan
and Deepmatcher) performance, we first split Ereal to training
set and test set T, then train model Mreal by the training
set of Ereal and train model Msyn by Esyn, finally, test the
performance of Mreal and Msyn on T respectively.

Magellan Model. Figure 6 shows the performances (including
precision, recall, F1 score) of the Magellan models trained by
Ereal and Esyn for different datasets. The F1 score differences
between SERD and Real are 4.71%, 4.49%, 3.52%, 3.57%
for dataset DBLP-ACM, Restaurant, Walmart-Amazon,
iTunes-Amazon respectively, with an average of 4.07%, and
the average precision, recall differences are 4.46%, 4.70%.
The average F1 score, precision, recall differences between
SERD- and Real are 39.88%, 46.89%, 27.09% respectively,
and the average F1 score, precision, recall differences between
EMBench and Real are 31.48%, 26.56%, 30.89% respectively.

10

Precision Recall F1 score0
20
40
60
80

100
Pe

rfo
rm

an
ce

 (%
)

(a) DBLP-ACM
Precision Recall F1 score0

20
40
60
80

100

(b) Restaurant
Precision Recall F1 score0

20
40
60
80

100

(c) Walmart-Amazon
Precision Recall F1 score0

20
40
60
80

100

(d) iTunes-Amazon

Real SERD SERD- EMBench

Fig. 6. Model evaluation by Magellan.

Precision Recall F1 score0
20
40
60
80

100

Pe
rfo

rm
an

ce
 (%

)

(a) DBLP-ACM
Precision Recall F1 score0

20
40
60
80

100

(b) Restaurant
Precision Recall F1 score0

20
40
60
80

100

(c) Walmart-Amazon
Precision Recall F1 score0

20
40
60
80

100

(d) iTunes-Amazon

Real SERD SERD- EMBench

Fig. 7. Model evaluation by Deepmatcher.
Deepmatcher Model. Figure 7 shows the performances of
the Deepmatcher models trained by Ereal and Esyn for dif-
ferent datasets. The F1 score differences between SERD and
Real are 0.83%, 5.01%, 4.11%, 2.10% for dataset DBLP-
ACM, Restaurant, Walmart-Amazon, iTunes-Amazon re-
spectively, with an average of 3.01%, and the average pre-
cision, recall differences are 2.24%, 3.84%. The average F1
score, precision, recall differences between SERD- and Real
are 38.24%, 45.65%, 24.88% respectively, and the average
F1 score, precision, recall differences between EMBench and
Real are 31.33%, 28.29%, 28.31% respectively.

The experiment results confirm our point: Mreal and Msyn

have similar performance on a same real test set: their F1 score
differences are less than 6%, and their average precision, recall
differences are less than 5%, 5% respectively. SERD performs
much better than SERD-, because there is no entity rejection
in SERD-, and every synthesized entity will be accepted.
But as illustrated in Section V, some synthesized entities will
destroy the original distribution, making the Osyn far from the
Oreal, so the models of SERD- and Real are very different.
The ML model performance differences of SERD and SERD-
show that the entity rejection technique works and the accepted
synthesized entities follow the Oreal. EMBench also has big
performance difference with Real, because EMBench does not
require the synthesized entities have similar distributions with
the real entities.

Exp-3: Data Evaluation

In this section, we want to show that Esyn and Ereal have
similar data characteristics: the same model tested on Esyn and
Ereal have similar performance. We synthesize ER datasets
Esyn which are the same sizes of Esyn by SERD and SERD-
for the 4 datasets. We evaluate Mreal on the test set of Ereal

(denoted by Treal) and the test set of Esyn (denoted by Tsyn),
where Tsyn is the same size as Treal and sampled from Esyn.

Magellan Model. Figure 8 shows the performance differences
of the Magellan models trained by Ereal and tested on Treal

and Tsyn. The F1 score differences between SERD and
Real are 4.77%, 4.31%, 3.91%, 3.20% for dataset DBLP-
ACM, Restaurant, Walmart-Amazon, iTunes-Amazon re-
spectively, with an average of 4.05%, and the average pre-
cision, recall differences are 4.99%, 4.65%. The average F1
score, precision, recall differences between SERD- and Real
are 15.40%, 13.84%, 17.55% respectively, and the average
F1 score, precision, recall differences between EMBench and
Real are 23.17%, 17.47%, 23.49% respectively.

Precision Recall F1 score0
10
20
30
40
50

Pe
rfo

rm
an

ce

 D
iff

er
en

ce
 (%

)

(a) DBLP-ACM
Precision Recall F1 score0

10
20
30
40
50

(b) Restaurant
Precision Recall F1 score0

10
20
30
40
50

(c) Walmart-Amazon
Precision Recall F1 score0

10
20
30
40
50

(d) iTunes-Amazon

SERD SERD- EMbench

Fig. 8. Data evaluation by Magellan.

Precision Recall F1 score0
10
20
30
40
50

Pe
rfo

rm
an

ce

 D
iff

er
en

ce
 (%

)

(a) DBLP-ACM
Precision Recall F1 score0

10
20
30
40
50

(b) Restaurant
Precision Recall F1 score0

10
20
30
40
50

(c) Walmart-Amazon
Precision Recall F1 score0

10
20
30
40
50

(d) iTunes-Amazon

SERD SERD- EMbench

Fig. 9. Data evaluation by Deepmatcher.

Deepmatcher Model. Figure 9 shows the performance differ-
ences of the Deepmatcher models trained by Ereal and tested
on Treal and Tsyn. The F1 score differences between SERD
and Real are 1.68%, 4.53%, 3.79%, 1.62% for dataset DBLP-
ACM, Restaurant, Walmart-Amazon, iTunes-Amazon re-
spectively, with an average of 2.90%, and the average pre-
cision, recall differences are 3.75%, 2.42%; The average F1
score, precision, recall differences between SERD- and Real
are 16.23%, 13.84%, 14.44% respectively, and the average
F1 score, precision, recall differences between EMBench and
Real are 21.71%, 17.47%, 21.87% respectively.

The experiment results confirm our point: the same model
test on Esyn and Ereal have similar performance: the F1
score differences between them are less than 5%, and the
average precision, recall differences are less than 6%, 5%
respectively. For SERD, the distributions of all pairs in Ereal

and Esyn are similar, so the same model test on Ereal and Esyn

behave similarly. But for SERD-, the Osyn is getting far away
from Oreal without entity rejection. For EMBench, there is no
guarantee that Osyn will be similar with Oreal.

Exp-4: Privacy Evaluation

In this section, we show that the synthetic data can well pro-
tect privacy, to a large extent. We use two widely used metrics
in existing works [36], [37], [38] for privacy evaluation.

Metrics. (1) Hitting Rate measures how many real entities
in Ereal are similar to a synthesized entity in Esyn. Two
entities are similar if their categorical values are the same
and the similarities of their numeric/date/textual values are
bigger than a threshold (we set the threshold as 0.9 in the
experiment). For each synthesized entity, we compute the
proportion of entities in Ereal that are similar to the synthesized
entity, i.e., Hitting Rate, and report the average Hitting Rate
of all synthesized entities. (2) Distance to the closest record
(DCR) measures whether a synthetic entity is weak from re-
identification attacks [36], [37]. For a real entity in Ereal, we
find a synthesized entity in Esyn which has the closest distance
with the real entity and report the average closest distances of
all entities in Ereal. The distance between two entities is one
minus their similarity. The higher the DCR is, the better the
privacy preservation is.

Table III shows the Hitting Rate and DCR of synthesized ER
datasets for different datasets and algorithms. (1) By Hitting
Rate, we can know that there are averagely 0.004%× (2616+
2294) = 0.196, 0.012% × 864 = 0.104, 0.002% × (2554 +
22074) = 0.493, 0.001%×(6907+55922) = 0.628 entities in

11

Ereal are similar with a synthesized entity for dataset DBLP-
ACM, Restaurant, Walmart-Amazon, iTunes-Amazon re-
spectively, which explains that the synthesized entities are very
different from the real entities. Because we use background
data as training data and the transformer models satisfy dif-
ferential privacy. (2) The DCRs of SERD are larger compared
to the DCRs in [10]: most of the DCRs in [10] are between
0.1 and 0.2 and the entities in [10] are synthesized by a
state-of-the-art statistical data synthesis method PrivBayes [39]
which has a theoretical guarantee on differential privacy [22].
Because most similarities of strings between the synthesized
entities and real entities are small, and this leads to the DCR
of ours larger than [10] (there are mainly categorical and
numeric columns in [10]). Hence, re-identification attacks can
not recover real entities by synthesized entities. (3) The Hitting
Rate of EMBench is much larger than SERD and the DCR
of EMBench is much smaller than SERD, which means that
EMBench will reveal some privacy information of real entities.
For example, there are averagely 0.248%× (6907+55922) =
155.8 entities in Ereal are similar with a synthesized entity in
iTunes-Amazon. EMBench synthesizes entities by modifying
real entities, so the synthesized entities are similar with real
entities. (4) The Hitting Rate and DCR of SERD and SERD-
are similar, which illustrates that entity rejection does not
affect the degree of privacy preservation.

Hitting Rate (%) DCRDataset SERD SERD- EMBench SERD SERD- EMBench
DBLP-ACM 0.004 0.004 0.126 0.452 0.449 0.386
Restaurant 0.012 0.013 0.145 0.576 0.572 0.422

Walmart-Amazon 0.002 0.002 0.152 0.579 0.581 0.269
iTunes-Amazon 0.001 0.001 0.248 0.571 0.563 0.215

TABLE III
PRIVACY EVALUATION WITH (ϵ = 1, δ = 10−5)-DP.

Exp-5: Efficiency Evaluation

In this section, we want to show that SERD can synthesize
ER datasets in a reasonable time. Table IV shows the time
for synthesizing different ER datasets. The offline time is the
time to train the transformer models for all textual columns
and the GAN model, and the online time is the time to
synthesize ER datasets. The offline time is proportional to
the number of textual columns: the more textual columns,
the more time required to train the transformer models. The
online time is proportional to the number of entities: the more
entities, the more time required to synthesize an ER dataset.
The experiment results show that we can synthesize small ER
datasets (i.e.,DBLP-ACM, Restaurant) within 5 hours and
bigger ER datasets (i.e.,Walmart-Amazon, iTunes-Amazon)
within 12 hours. The runtime is reasonable because it is totally
fine to synthesize an ER dataset using hours which is much
cheaper than preparing an ER dataset manually while keeping
the same similarity distributions.

DBLP-ACM Restaurant Walmart-Amazon iTunes-Amazon
Offline 4.58 hour 3.45 hour 6.77 hour 9.83 hour
Online 4.02 min 1.57 min 36.85 min 78.94 min

TABLE IV
EFFICIENCY EVALUATION.

VIII. RELATED WORKS

Entity Resolution. Entity resolution (ER) is a classic prob-
lem in data management [1], [40], [41], [42], [43], [44].
Magellan [9] is an entity resolution system by traditional
machine learning methods (e.g., random forest, SVM, etc.).
Deepmatcher [10] applies DL methods to ER inspired by
the successes of DL in NLP task [23], [31]. ZeroER [12]
proposes a generative model based on GMM for matching
and non-matching distributions, and uses the EM algorithm
to learn the distributions. Then ZeroER predicts whether an
entity pair is matching by estimating their probability based on
the distribution. The works [19], [45], [46] use crowdsourcing
platforms to improve the accuracy of entity resolution.

ER Benchmarks. There is a widely known benchmark repos-
itory for entity resolution: The Magellan Data Repository [9].
It contains 13 collections of ER datasets, and each collection
contains multiple ER benchmark datasets. Different collections
of ER datasets are collected in different ways, or designed for
different ER steps, data types, and domains.

Synthesized ER Benchmarks. EMBench [13], [14] is a
benchmark for ER which aims to perform extensive evalua-
tions of different ER algorithms. Given a collection of entities
E, EMBench synthesizes new collections of entities E1 by
modifying the entities in E using predefined rules. EMBench
can synthesize multiple new collections of entities (i.e., E1, E2,
E3, etc.) by different combinations of rules, then users can test
the accuracy and scalability of their ER algorithms on these
synthesized benchmarks.

Generative Models. With the rise of DL, deep generative
models (DGMs) [47], [38], [48], [29] have achieved tremen-
dous success in images [49], [50], natural language process-
ing [51], and speech recognition [52]. Recently, there have
been several attempts [15], [16], [17], [18] of synthesizing
relational data using GANs. These works only synthesize one
relational table, and use GANs to learn the distribution of the
original table. We want to synthesize two relational tables, and
some entities in the two tables are similar (i.e., matching).
Therefore, the ER dataset synthesizing problem cannot be
easily solved by GANs only.

IX. CONCLUSION

In this paper, we have proposed privacy preserving solutions
to synthesize an ER dataset from a real ER dataset. We have
conducted extensive experiments to verify that our approach
can synthesize ER dataset such that the ER matcher trained
on the synthesized dataset has similar performance with that
of the real ER dataset.

ACKNOWLEDGMENT

This work is supported by NSF of China (61925205,
62102215, 62072261), Huawei, TAL education, China
National Postdoctoral Program for Innovative Talents
(BX2021155), China Postdoctoral Science Foundation
(2021M691784), Shuimu Tsinghua Scholar and Zhejiang
Lab’s International Talent Fund for Young Professionals.

12

REFERENCES

[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” TKDE, vol. 19, no. 1, pp. 1–16, 2007.

[2] H. L. Dunn, “Record linkage,” American Journal of Public Health,
vol. 36, no. 12, pp. 1412–1416, 1946.

[3] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James,
“Automatic linkage of vital records,” Science, vol. 130, no. 3381, pp.
954–959, 1959.

[4] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal of
the American Statistical Association, vol. 64, no. 328, pp. 1183–1210,
1969.

[5] Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso, A. Tor-
ralba, and S. Fidler, “Datasetgan: Efficient labeled data factory with
minimal human effort,” in CVPR, 2021, pp. 10 145–10 155.

[6] X. Yan, D. Acuna, and S. Fidler, “Neural data server: A large-scale
search engine for transfer learning data,” in CVPR, 2020, pp. 3893–
3902.

[7] A. Kar, A. Prakash, M.-Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak,
D. Acuna, A. Torralba, and S. Fidler, “Meta-sim: Learning to generate
synthetic datasets,” in CVPR, 2019, pp. 4551–4560.

[8] S. Tripathi, S. Chandra, A. Agrawal, A. Tyagi, J. M. Rehg, and V. Chari,
“Learning to generate synthetic data via compositing,” in CVPR, 2019,
pp. 461–470.

[9] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard et al.,
“Magellan: Toward building entity matching management systems,”
Proc. VLDB Endow., vol. 9, no. 12, pp. 1197–1208, 2016.

[10] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep learning for entity matching: A
design space exploration,” in SIGMOD. ACM, 2018, pp. 19–34.

[11] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and
N. Tang, “Distributed representations of tuples for entity resolution,”
Proc. VLDB Endow., vol. 11, no. 11, pp. 1454–1467, 2018.

[12] R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan,
“Zeroer: Entity resolution using zero labeled examples,” in SIGMOD,
2020, pp. 1149–1164.

[13] E. Ioannou, N. Rassadko, and Y. Velegrakis, “On generating benchmark
data for entity matching,” J. Data Semant., vol. 2, no. 1, pp. 37–56,
2013.

[14] E. Ioannou and Y. Velegrakis, “Embench++: Data for a thorough
benchmarking of matching-related methods,” Semantic Web, vol. 10,
no. 2, pp. 435–450, 2019.

[15] J. Fan, T. Liu, G. Li, J. Chen, Y. Shen, and X. Du, “Relational
data synthesis using generative adversarial networks: A design space
exploration,” VLDB, vol. 13, no. 11, pp. 1962–1975, 2020.

[16] H. Chen, S. Jajodia, J. Liu, N. Park, V. Sokolov, and V. Subrahmanian,
“Faketables: Using gans to generate functional dependency preserving
tables with bounded real data.” in IJCAI, 2019, pp. 2074–2080.

[17] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” VLDB,
vol. 11, no. 10, pp. 1071–1083, 2018.

[18] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional GAN,” in NeurIPS, H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
and R. Garnett, Eds., 2019, pp. 7333–7343.

[19] C. Chai, G. Li, J. Li, D. Deng, and J. Feng, “Cost-effective crowdsourced
entity resolution: A partial-order approach,” in SIGMOD, 2016, pp. 969–
984.

[20] J. Wang, G. Li, J. X. Yu, and J. Feng, “Entity matching: How similar
is similar,” Proc. VLDB Endow., vol. 4, no. 10, pp. 622–633, 2011.

[21] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265–284.

[22] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[24] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in SIGSAC,
2016, pp. 308–318.

[25] S. Kullback, Information theory and statistics. Courier Corporation,
1997.

[26] F. Nicolas and E. Rivals, “Hardness results for the center and median
string problems under the weighted and unweighted edit distances,”
Journal of discrete algorithms, vol. 3, no. 2-4, pp. 390–415, 2005.

[27] K. Aho, D. Derryberry, and T. Peterson, “Model selection for ecologists:
the worldviews of aic and bic,” Ecology, vol. 95, no. 3, pp. 631–636,
2014.

[28] A. P. Dempster, “Maximum likelihood from incomplete data via the em
algorithm,” Journal of the Royal Statistical Society, vol. 39, 1977.

[29] I. Goodfellow, J. Pougetabadie, M. Mirza, B. Xu, D. Wardefarley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
NIPS, pp. 2672–2680, 2014.

[30] L. Xu and K. Veeramachaneni, “Synthesizing tabular data using gener-
ative adversarial networks,” arXiv preprint arXiv:1811.11264, 2018.

[31] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014, pp. 3104–3112.

[32] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[34] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdi-
nov, “Transformer-xl: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019.

[35] Y. Govind, P. Konda, and et.al., “Entity matching meets data science: A
progress report from the magellan project,” in SIGMOD. ACM, 2019,
pp. 389–403.

[36] P.-H. Lu, P.-C. Wang, and C.-M. Yu, “Empirical evaluation on synthetic
data generation with generative adversarial network,” in WIMS, 2019,
pp. 1–6.

[37] J. M. Mateo-Sanz, F. Sebé, and J. Domingo-Ferrer, “Outlier protection in
continuous microdata masking,” in International Workshop on Privacy
in Statistical Databases. Springer, 2004, pp. 201–215.

[38] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private
generative adversarial network,” CoRR, vol. abs/1802.06739, 2018.

[39] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“Privbayes: Private data release via bayesian networks,” ACM Trans.
Database Syst., vol. 42, no. 4, pp. 25:1–25:41, 2017.

[40] X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualization more
efficient and effective: a survey,” The VLDB Journal, vol. 29, no. 1, pp.
93–117, 2020.

[41] X. Qin, C. Chai, Y. Luo, T. Zhao, N. Tang, G. Li, J. Feng, X. Yu, and
M. Ouzzani, “Interactively discovering and ranking desired tuples by
data exploration,” The VLDB Journal, pp. 1–25, 2022.

[42] X. Qin, C. Chai, Y. Luo, N. Tang, and G. Li, “Interactively discovering
and ranking desired tuples without writing sql queries,” in SIGMOD,
2020, pp. 2745–2748.

[43] Y. Luo, X. Qin, C. Chai, N. Tang, G. Li, and W. Li, “Steerable self-
driving data visualization,” TKDE, vol. 34, no. 1, pp. 475–490, 2020.

[44] X. Qin, Y. Luo, N. Tang, and G. Li, “Deepeye: An automatic big data
visualization framework,” Big data mining and analytics, vol. 1, no. 1,
pp. 75–82, 2018.

[45] C. Chai, G. Li, J. Li, D. Deng, and J. Feng, “A partial-order-based
framework for cost-effective crowdsourced entity resolution,” VLDB J.,
vol. 27, no. 6, pp. 745–770, 2018.

[46] G. Li and C. C. et al., “CDB: optimizing queries with crowd-based
selections and joins,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017. ACM, 2017, pp. 1463–1478.
[Online]. Available: https://doi.org/10.1145/3035918.3064036

[47] A. Oussidi and A. Elhassouny, “Deep generative models: Survey,” in
ISCV, 2018, pp. 1–8.

[48] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[49] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in CVPR, 2019, pp. 4401–4410.

[50] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[51] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in AAAI, 2017.

[52] C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech enhancement
with generative adversarial networks for robust speech recognition,” in
ICASSP, 2018, pp. 5024–5028.

13

