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ABSTRACT

We study the problem of self-supervised and interpretable data
cleaning, which automatically extracts interpretable data repair
rules from dirty data. In this paper, we propose a novel framework,
namely GARF, based on sequence generative adversarial networks
(SeqGAN). One key information GARF tries to capture is data repair
rules (for example, if the city is “Dothan”, then the county should
be “Houston”). GARF employs a SeqGAN consisting of a generator
G and a discriminator D that trains G to learn the dependency rela-
tionships (e.g., given a city value “Dothan” as input, the county can
be determined as “Houston”). After training, the generator G can be
used to generate data repair rules, but may contain both trusted and
untrusted rules, especially when learning from dirty data. To miti-
gate this problem, GARF further updates the learned relationships
with another discriminator D’ to iteratively improve the quality
of both rules and data. GARF takes advantages of both logical and
learning-based methods, which allow cleaning dirty data with high
interpretability and have no requirements for prior knowledge and
training data. Extensive experiments on real-world and synthetic
datasets demonstrate the effectiveness of GARF. GARF achieves new
state-of-the-art data cleaning result with high accuracy, through
learning from dirty datasets without human supervision.
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1 INTRODUCTION

Data is a critical asset for decision-making across organizations, but
data is useful only if it is of high-quality. Unfortunately, real-life data
is often dirty [1, 23] and data cleaning is undeniably a laborious and
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time-consuming task [14, 15]. Broadly speaking, there are two types
of data cleaning tasks: qualitative data cleaning and quantitative (or
statistical) data cleaning [35]. Qualitative cleaning mainly focuses
on repairing categorical values (e.g., gender, city) that violate data
dependency, while quantitative data cleaning relies on statistical
methods to identify and repair erroneous data that often come in
the form of numeric values. Both types are common in practice.
Our focus in this work is on qualitative data cleaning.

ExamPLE 1. [Qualitative data errors| Consider the Hospital dataset
in Table 1 including seven tuples: t|—t7, with the schema (Tuple ID,
Provider ID, City, State, Zip, County, Condition, Measure ID). Data
errors are red-colored, and their corresponding ground truth values
are green-colored.

Logical data cleaning. One line of work on qualitative data clean-
ing uses integrity constraints, such as functional dependencies (FDs)
[3], conditional functional dependencies (CFDs) [4], and pattern
functional dependencies [36]. Another line of works employs data
repair rules, such as editing rules [22], fixing rules [43], Sherlock
rules [31], Detective rules [28], and so on. Integrity constraints or
data repair rules methods are considered as logical data cleaning
methods, which repair data by logical inference.

ExAMPLE 2. [Integrity constraints and data repair rules.] Consider
the following FDs (fi, f2) and data repair rules (r1,ra, r3):

FD fi: City — State

FD fy: State, Zip — County

Rule rq: [City = “Monticello”] — [State = “GA”]

Rule ry: [City = “Dothan”] — [State = “AL”]

Rule r3: [State = “AL”, Zip=36301] — [County = “Houston”]

where fi is an FD which means that a city uniquely determines a
state, similarly to fo; and ry is a data repair rule that if the value
of the City in a tuple is “Monticello’, then its State should be “GA”,
similarly to rules rp and rs.

Integrity constraints are typically defined over more than one
tuple (e.g., FDs are defined over two tuples) and they only spec-
ify which attribute values putting together violate a given FD
(a.k.a. static semantics [22]). For example, the four values (¢; [City],
t1[State], t2[City], t2[State]) violate f; in Example 2 but f; does
not specify which value is wrong. In contrast, data repair rules are
often defined on one tuple and clearly specify which attribute value
should be updated (a.k.a. dynamic semantics [22, 24]). For example,
rule ry says that tp[State] should be repaired from “GAA” to “GA”.
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Table 1: Sample tuples of a Hospital table.

TupleID | Provider ID City ‘ State ‘ Zip County Condition Measure ID

t 111303 Monticello GA 31064 Jasper Emergency Department ED_1b
ty 111303 Monticello GAA (GA) 31064 Jasper Emergency Department ED_2b
t3 40051 Monticello AR 71655 Drew Emergency Department EDV

ty 10001 Monticello (Dothan) AL 36301 Houston Preventive Care IMM_2
ts 10001 Dothan AL 36301 Houston Colonoscopy care OP_29
te 10001 Dothan AR (AL) NULL (36301) Houston Colonoscopy care OP_30
t7 10001 Dothan AL 36301 Houst (Houston) Cancer care OP_33

Manually specifying integrity constraints and data repair rules
requires domain knowledge, which is time consuming and error-
prone. Discovering them directly from dirty data is known to pro-
duce many false positives [10].

Learning-based data cleaning. Machine learning (ML) based
methods have also been studied, such as Guided data repair [48]
and SCAREd [47], which need a lot of training data. Unfortunately,
the clean training data and the training data labels are usually
unavailable or do not have enough capacity in real world scenarios.

Recently, the use of deep learning (DL), especially Transformer-
based language models, for tabular data learning that can be used
for data cleaning has also been investigated, such as RPT [41] and
TURL [16]. RPT employs an encoder-decoder architecture and is
pre-trained in a tuple-to-tuple fashion by corrupting the input tuple
and then learning to reconstruct the original tuple. TURL employs
an encoder-only architecture for learned representations, instead
of generating an output, e.g., a missing cell value. In fact, TURL
has to link the learned presentation with a knowledge base (in the
TURL paper, they used a collection of web tables, in total 4.6GB)
in order to extract values for imputing the missing value. RPT is a
positioning paper that does not provide a quantitatively evaluation
for dare repair problems. TURL shows some preliminary result, but
with low precision, e.g., the reported precision of TURL on the data
repair task (or “cell filling task” used by TURL) is only 54.8% using
the top-1 result (see Table 13 in [16], column “P@1”).

Limitations of existing solutions. Logical data cleaning methods
that use constraints and rules are highly interpretable, but their
main limitation is that obtaining high-quality data repair rules is
very difficult in practice, regardless of whether they are provided
by humans or are automatically discovered [33]. Moreover, these
data repair rules are often used together with high-fidelity master
data [22] or knowledge bases [12], which are often unavailable.
Learning-based data cleaning methods detect and repair dirty data
by learning the real data distribution, with two main limitations:
(1) ML-based methods usually require clean and well-annotated
training data, because learning on dirty datasets cannot guarantee
correctness and may lead to new errors; (2) DL-based methods are
typically uninterpretable, such as RPT [42] and TURL [16], which
hinders their wide adoption in practice.

To tackle the above limitations that are often met for data clean-
ing, we seek to answer the following question: whether we can use
deep learning models to automatically (e.g., with self-supervision)
generate interpretable data cleaning rules that can be used to clean

data, by combining logical data cleaning and learning-based data
cleaning methods in one framework?

Our proposal: self-supervised and interpretable cleaning.
We propose a generative adversarial repairing framework, namely
GARF, a self-supervised framework that generates data repair rules
and then repairs both inaccurate rules and dirty data based on
generative adversarial training. GARF includes two parts: (1) a rule
generation model and (2) a co-cleaning model.

The rule generation model introduces a deep learning model
SeqGAN to learn the dependency relationships among attributes
and values in datasets. Following the learned relationships, we
generate fine-grained data repair rules to detect and repair dirty
data. However, the automatically generated rules may not be fully
trusted, especially when learning directly from dirty datasets.

ExaMmPLE 3. Consider Table 1 and the rules of Example 2. Tu-
ples tz, t3, and t4 violate ri. However, it is hard to distinguish
the false one and repair it in a trusted manner. Based on this
rule, we may modify all the violated values in ty, t3 and t4.
Based on the data, we can change the value in the rule, such as
[City = “Monticello”] — [State = “AR”]. In addition, we can also
add additional conditions to make the rule fit better to the data,
such as [City = “Monticello”, Zip = 31064] — [State = “GA”]. Al-
though there are many optional operations, some are not trusted.

The co-cleaning model simultaneously repairs dirty data and
inaccurate rules, based on the relative confidence between data and
rules. Intuitively, when the rules are relatively more trusted, we
repair the wrong values using the rules. On the other hand, if data
is relatively more trusted, we will update the learned relationships
and repair the rules based on the data.

Contributions. Our contributions are summarized as follows:

(1) A novel framework. We introduce GARF, a self-supervised data
repair framework, to automatically generate data repair rules and
clean dirty data in a reliable and interpretable manner. This model
takes advantages of both logical data cleaning and learning-based
data cleaning methods. (Section 2)

(2) Rule generation with SeqGAN. To automatically generate
data repair rules, we propose a novel rule generation model. We
utilize a SeqGAN model to learn the relationships among data.
Instead of updating values using SeqGAN directly, we convert the
learned relationships into data repair rules, which are interpretable.
The process is completely data-driven with no requirements for
domain knowledge or training data. (Section 3)



(3) Repairing dirty data and inaccurate rules. Considering
the practical case that both rules and data maybe inaccurate, we
propose a co-cleaning model to repair both rules and data. We sign
dynamic confidence measures to evaluate rules and data. Based on
the confidence, we modify the inaccurate rules to fit the data and
repair the dirty data using rules iteratively. (Section 4)

(4) Experiment. We conduct extensive experiments to evaluate
the performance of our proposed framework, which verifies its
effectiveness on both real-world and synthetic datasets. As our
experiments show, GARF outperforms a variety of state-of-the-art
data cleaning methods with greater accuracy, robustness, and in-
terpretability. (Section 5)

2 PROBLEM AND SOLUTION OVERVIEW
2.1 Data Repair Rules

Consider a table D defined over the relational schema R =
(ai,...,an). The domain of an attribute a; € R is denoted by
dom(a;).

Data repair rules. We formalize a data repair rule r defined on R
as the following syntax: [Ar,v(Ar)] — [AR,v(AR)], where Af isa
set of attributes, v(Ap) is a set of attribute values relative to Ay, Ag
is a single attribute, and v(AR) is a single attribute value relative to
AR. Also, A} and Ap are often referred to as left-hand side attributes
(LHS) and right-hand side attributes (RHS), respectively.

Intuitively, the LHS attributes/values can uniquely determine
the RHS attribute/value, such as the rule r3 [State = “AL”, Zip =
36301] — [County = “Houston”] in Example 2. In other words,
given any tuple, if its State value is “AL” and Zip value is 36301,
then its County should be “Houston”.

We also write AVp = [A1,0(A1),...,Am,0(Am)] (m = |AVL] is
the number of attributes in AV} and A; is the i-th attribute in AV}),
which denotes the set of (attribute name, attribute value) pairs for
all attributes in Ay, and AVgR = [Ag,v(AR)], which denotes one
(attribute name, attribute value) pair. Consider again rule r3 in
Example 2, we have AV}, = [State = “AL”, Zip = 36301] and AVg =
[County = “Houston”].

Next, we describe the definitions of applying data repair rules.

Rule matching. Given a data repair rule r : [Ar,v(Ar)] —

[AR,v(AR)] and a tuple ¢:

e tuple t matches rule r, denoted by ¢ = r, iff t(Ar) = v(Ar)
and t(AR) = v(AR);

e tuple ¢t violates rule r, denoted by ¢ |~ r, iff t(Ar) = v(AL)
but t(AR) # v(AR).

In addition, we say that a rule r is applicable to a tuple ¢ if
t(Ar) = v(Ap), denoted by t + r, i.e, when either ¢ matches r
(t E r)or t violates r (t [~ r).

ExAMPLE 4. Consider rulery in Example 2 and Table 1. t; matches
r1 (ie., t1 | r1) but ty violates r1 (i.e., ty £ r1).

We say that a table D matches rule r iff for any tuple t in D, ¢ = r,
and a table D violates rule r iff there exists at least one tuple ¢ in D
where t £ r.

Repair Instance. Consider a table D and a set ¥ of data repair rules,
we say that D’ is a repair instance of D relative to ¥, denoted by
D’ | 3, iff (1) D’ is obtained from D by value updates, i.e., without
tuple/column insertions/deletions; and (2) D’ [ r for each rule
re.

ExampLE 5. Consider rules Y = {r1,rz,r3} in Example 2 and table
D (with erroneous values in red color) in Table 1. Apparently, D |~ 3.
Let D’ be the updated instance of D, where the erroneous values have
been updated in green color. One can readily verify that D’ |= X; that
is, D’ is a repair instance of D, relative to .

2.2 Self-supervised and Interpretable Cleaning

Self-supervised rule generation. Given a table D, self-supervised
rule generation is to learn from D without any human annotations
about data errors and generate a set X of data repair rules.

Intuitively, when considering deep learning based solutions, gen-
erative models should be adopted.

Co-cleaning inaccurate rules and dirty data. Given a table D
and a set of ¥ data repair rules, the problem of co-cleaning inaccurate
rules and dirty data is to repair both D to D’ and 3 to 3’ such that
D’ is a repair instance of 3/, i.e, D’ E ¥’.

2.3 Solution Overview

An overview of GARF is shown in Figure 1. GARF takes as input a
dirty dataset and returns a set of trusted rules and cleaned data. The
whole cleaning process is data-driven without human supervision.
GARF consists of two models “rule generation” and “co-cleaning”:

Rule generation: Given a dirty dataset, GARF first generates data
repair rules based on the rule generation model, which learns the
dependency relationships among data. The core of rule generation
is a SeqGAN which consists of a generator G and a discriminator
Dy;. Specifically, we embed the tuples in dirty dataset as the inputs to
train the SeqGAN model in a self-supervised manner. After training,
the generated data follows the same distribution as the real data,
which means that the generator G, has captured the dependency
relationships among data. After this, we use an adaptor to convert
the learned relationships from G; to data repair rules, which can
be used for detecting and repairing dirty data. We will provide the
details of this model in Section 3.

Co-cleaning: After we have obtained rules from rule generation
model, these rules may not be trusted enough. Therefore, we simul-
taneously clean inaccurate rules and dirty data in the co-cleaning
model. We detect data using the generated rules to calculate the
dynamic confidence for each rule and the tuples violating the rule.
When the confidence of a rule is greater, we update the data by
repairing the violated tuples according to the rule. Otherwise, if the
confidence of the tuple is greater, we update the conflicting rule
based on the data. Note that the rules are generated following the
relationships learned from G, and we use another discriminator Dy
to update G and generate new rules (see Section 4 for more details).
Repeat the above operations until there is no tuple violating rules;
we can obtain cleaned data and trusted rules.
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Figure 1: An overview of GARF.

3 SELF-SUPERVISED RULE GENERATION
3.1 Learning with SeqGAN

As noted earlier, manually providing data repair rules is always
costly and error-prone, while ML-based methods usually require a
lot of training data, which may be unavailable or not have enough
capacity. Meanwhile, we notice that many deep learning models
are widely used as they can capture data characteristics only based
on the input data without labels. However, these models are usually
not interpretable. To achieve high interpretability in data cleaning,
we introduce a sequence GAN model to generate data repair rules
by learning directly from dirty datasets.

Generative Adversarial Networks (GAN). GAN is a generative
model that consists of a generator G and a discriminator D, which
are competing in an adversarial process. The generator G takes as
input random noise z and generates synthetic samples G(z), while
the discriminator D determines the probability that a given sample
comes from real data rather than being generated by G. Intuitively,
the optimal D could distinguish real samples from fake ones, and
the optimal G could generate indistinguishable fake samples that
make D random guesses.

GANSs are adversarially trained iteratively using minibatch sto-
chastic gradient descent algorithms. More specifically, during each
iteration, it first freezes the generator G and only trains the discrim-
inator D to be better; then it freezes the discriminator D and only
trains the generator G. The training process terminates when the
generator produces fake data as a perfect substitute for real data.

SeqGAN. Although GAN has been successful and widely used for
computer vision tasks (e.g., generating sample images [17] or image
inpainting [51]), it is not easy to be used for generating tuples with
many discrete tokens, which are common in real-world datasets.
The fundamental reason is that the generator network in GAN is
designed to be able to adjust the output continuously, which does
not work well on discrete data generation [52].

We consider related attribute values as contexts and the dataset
as a corpus where a tuple (v1,v,...,0,) can be seen as a value

sequence under the order of attributes in dataset D, which can be
represented as a set of AV;. The above problem can be addressed by
training a SeqGAN [52], which benefits from reinforcement learn-
ing (RL) to bypass the problem in GAN generator that is difficult to
deal with discrete tokens. RL framework maps scenarios to appro-
priate actions, with the goal of maximizing a cumulative reward, in
which a learning agent interacts with a Markov Decision Process
(MDP).

More specifically, we treat the generative model as the agent,
and the state is the generated tokens so far while the action is the
next token to be generated. Note that the reward in our model
is different from the common cases in RL models that require a
task-specific score (e.g., BLEU in machine translation). We employ a
discriminator to evaluate the sequence and then provide a reward to
guide the learning of the generative model. We regard the generative
model as a stochastic parametrized policy, in which we employ a
Monte Carlo (MC) search to approximate the state-action value. MC
search is a method for finding optimal decisions in a given domain
by taking random samples in the decision space and building a
search tree based on the results. We iteratively build the search
tree until the predefined length of sequence is reached, at which
point the search is halted and the best-performing root action is
returned. Each node in the search tree represents a current state,
and the links directed to the child nodes represent actions leading
to subsequent states. By training the generator via policy gradient,
we avoid the difficulty updating for discrete tokens.

Training SeqGAN. We first initialize the value sequence generator
G based on a random 6-parameterized policy network. Afterwards,
we train Gs with the tuples of datasets at hand as training data,
and produce a sequence Vi, = (01, ..., 0z, ..., v ). For improving Gs,
we train the discriminator D by providing positive examples from
real datasets and negative examples from generated sequences.
We denote Dy (Vi:n) as the probability indicating how likely a
sequence Vi.p, is real. The problem of updating discrete values can
be addressed by reinforcement learning.

At time step t, the state s is the current value sequence
(v1, ...,0¢—1) and the action a is the next value v; to select. Thus,
the policy Gg (v¢|Vi:4—1) is stochastic, whereas the state transition
is deterministic after an action has been chosen. Then, G5 can be
updated based on a policy gradient and Monte Carlo search on the
basis of the expected final reward that is estimated by the likeli-
hood that Gs would fool Ds. The objective of Gy is to generate a
sequence from the start state to maximize the expected final reward:
J(0) =3 Gy (v1]s0) - Qgi (s0,v1) and the action-value function Q

can be denoted as:

N
% kz—:1 Dy (Yllfn) fort<n (1)

ng (s=Viy-r,a=0v) = =
D¢ (Yl:t)

fort=n

where Yllfn is the sampled result of an N-time Monte Carlo search.
Finally, the generator’s parameters 6 update following: 6 « 0 +
ap V] (0), where ay, is the learning rate at h-th step.

When the SeqGAN converges, it gains the ability of generating
synthetic tuples where the attributes and values adhere to the same
relationships in real data. For the case that whenever the input has
the same attribute value pairs, the output always holds the same



result, we believe that the input can functionally determine the
output, which can be seen as a dependency relationship.

ExAMPLE 6. Consider the dataset in Table 1. The tuple t; can be
seen as a sequence of values “111303, Monticello, GA, 31064, ... ” under
the attribute order “Provider ID, City, State, Zip, ..., For a well-trained
SeqGAN, given the value sequence “Monticello, GA” as the input of
LSTM in generator, it may return “31064” as a predicted result with a
very large probability. Then we could say that the generator Gs has
learned the dependency relationship that the attribute value pairs
(City, “Monticello”) and (State, “GA”) can functionally determine
the attribute value pair (Zip, 31064).

3.2 Generating Data repair Rules

After the SeqGAN is trained, we next discuss how to generate data
repair rules.

To utilize the knowledge captured by SeqGAN in an interpretable
manner, we use an adaptor to convert the learned relationships to
fine-grained rules. As mentioned earlier, when SeqGAN converges,
the generated sequences adhere to the real relationships, which
are controlled by Gs. Thus, we consider the input of Gs as the AV
while the predicted result is the AVg. If the value in AVR is equal to
the real one, we say AV], can functionally determine AVg. Following
the syntax in Section 2.1, candidate repair rules can be generated.

Specifically, to generate a rule, we need to define the attributes
and values in AV} and AVg. We consider that, for a tuple with
n attributes, the number of latent AV} is n!, while the number
of AVg is only n. Consequently, we build rules beginning from
AVR. As shown in Figure 2, we take the i-th attribute value pair
AV; = (aj,v;) as the result part AVg, where i ranges from 2 to n.
Given the attribute value pairs of AV} as input, we predict AVR
based on Gs. At first, AVy, = {AV;_1}. If the predicted value is not
equal to v;, AVp — AVR is obviously false. Then we supplement
AV with the previous attribute value as AVp = {AV;_5, AV;_1}. We
repeat the above process until the predicted value is equal to the
real value or the first attribute value pair AV; has been included in
AVr.

Note that because relational data is order irrelevant, parsing
the tuples only from left-to-right may cause many rules undis-
covered. Therefore, we train the model twice with different at-
tribute orders: forward and backward, respectively. By doing this,
we can obtain all rules with an attribute in the precondition (e.g.,
[Zip = 36301] — [County = “Houston”]), and most rules
with two or more attributes in the precondition (e.g., [City =
“Dothan”, State = “AL”] — [County = “Houston”]). Although
there are still some complex rules that cannot be discovered, the
available rules can already achieve good cleaning results. In fact,
complex rules are not common in practice.

3.3 Optimization

Although a large number of data repair rules have been generated,
they cannot be used for cleaning data directly. A key point is that the
generated rules may be (1) inaccurate or (2) contain redundant
attributes. Next, we will describe optimization techniques to tackle
the above two problems.

ExaMPpLE 7. [Inaccurate rules and redundant attributes.] Consider
the following rules.

Supplement AV,

N

Provider ID  City State  County Zip

Sampled

sequence [ Dotran | [ AL || Hou]sbn“ 3630) AV, v £V

AV,
'
¥ ’
Ci Count Optimizer Ci State Coun l¢—
Z Dothan [ — | Houston Dothan —) Houston

AV, > AV,
Data repair rules set

AV, > AV,
Candidate rules set

Figure 2: Rule generation based on Gs.

Algorithm 1 Rule generation model

Require: real dataset D
1: Initialize generator policy Gy and discriminator D with ran-
dom weights, rules set = « 0.
2: repeat
3. for g-steps of generator do
4 Generate a sequence Vi., ~ Gg and compute Q by Eq. (2)
5 Update Gy via policy gradient
6:  end for
7. for d-steps of discriminator do
8 Train discriminator Ds using generated sequences and
real tuples
9: end for
10: until SeqGAN converges
11: Generate attribute value sequences set Sy
12: for each sequence s in Sy do
13:  for each attribute value AV; of sequence s do

14: AV «— AV, AVg «— AV, k=i

15: repeat

16: Predict o] using AVy based on Gs
17: if v; # v] then

18: AVp — AVLUAV,_1,k=k-1
19: else

20: Detect the violated values as AV,
21: Y «— (AVp — AVR)

22: end if

23: until o; =0/ ork < 1

24¢:  end for

25: end for

26: for each candidate rule r in X do

27: N « Count the number of tuples t |=r
28:  Filter the rules which N < 2

29:  for each subset AV}, in AV}, of rule r do

30: Make r minimal by masking AV}, and predicting AVg again
31:  end for
32: end for

e ry : [PID = 10001, City = “Monticello”] — [State = “AL”]
e ry : [City = “Dothan”, State = “AL”] — [County = “Houston”|



where ry is an inaccurate rule with only one erroneous tuple matching
it and ro is a correct rule but contains redundant attributes.

We consider that inaccurate rules may be generated because the
predicted values are based on the probability in the policy network,
which can be impacted by dirty data or just coincidence. Here, we
address this problem in an easy but useful filter. For each candidate
rule r, we count the number of tuples t |= r as N.

We notice that few errors are completely the same, which lead to
many inaccurate rules have a commonality that they cannot match
real tuples (N = 0) or only can match one erroneous tuple (N = 1).
On the other hand, a rule that N = 1 has no contribution to repair
data sets even if it is correct, as it cannot be used for other tuples
and the only tuple matching it has been correct. As a result, we
remove all the rules that N < 2. Note that the filter cannot delete
all incorrect rules, and further repair of the rules will be discussed
in Section 4.

Moreover, we notice that the information of State in rule ry is
redundant because the information that City = “Dothan” is enough
to determine County = “Houston”. We reduce the redundant at-
tributes by utilizing the benefits of LSTM, which has a long short
term memory. For the well-trained generator G in Figure 2, it can
predict the value of County as “Houston” even if we mask the value
of State. As a result, we could optimize the rules by masking the
subset of AV and predict the result again.

Formally, for the rule r : {AV},...,AVi_1} — AV;, we mask
AV;_1 and predict v; once again, if the predicted value is still equal
to v;, we believe that AV;_1 is redundant for the rule and should be
deleted. Otherwise, AV;_1 is useful and we keep it unchanged. Then,
we mask AV;_, and repeat the process until AVy is not functionally
dependent on any proper subset of AV and finally the rule r can
be minimal. We train the generator in g-steps while train the dis-
criminator in d-steps, and the whole details of the rule generation
can be seen in Algorithm 1.

Clearly, learning the relationships based on SeqGAN, we can
generate many fine-grained data repair rules. The whole process
is completely automatic, without humans or labels. Furthermore,
by self-training on the target dataset, which can be considered as a
corpus, the generated rules can break the limitations of domains
and languages.

4 CO-CLEANING INACCURATE RULES AND
DIRTY DATA

We consider the practical cases that dirty datasets include errors,
and the rules learned from such datasets are also untrusted. As a
result, when a tuple violates a rule, we cannot distinguish which one
is the real error and how to repair it. In this section, we introduce
a co-cleaning model to detect and repair both rules and data in a
reliable manner.

4.1 Confidence of Rules and Data

To distinguish between rules and the data violating the rules, which
are the real errors, the confidence for evaluating the dependability
is necessary. Existing confidence metrics mainly rely either on the
count of co-occurrences or the support rate, both of which require
manually setting a rigid threshold. However, a rigid value may have
trouble to distinguish some inaccurate rules in practical cases.

ExampLE 8. Consider the rules in Example 2 and Tabel 1. Following
the rule r1, we should fix "GAA" in t; and "AR" in t3 to "GA" respec-
tively. Nevertheless, in reality, cities in different states are allowed to
have the same name; e.g. "Monticello" belongs to "Georgia"(GA) and
also belongs to "Arkansas"(AR).

Obviously, although r; maybe hold for most tuples with a high
support rate, it is not always correct for the whole dataset. As
a result, traditional metrics that use rigid thresholds can hardly
tackle such cases, and repairing data that use such rules may lead
to incorrect results. To address this problem, we sign dynamic
confidence measures for evaluating rules and data.

We denote the confidence measure of the rules and the tuples by
Trute and Ty pje, respectively. Intuitively, for a rule r, (1) the more
tuples match r, the larger likelihood that r is correct; (2) the rule r
is usually inaccurate if a lot of tuples violate it. In other words, T,
should be increased when tuples match r while it would be reduced
when r violates tuples. As a result, we initially set T,.,,, of all rules
in set X as Ty (default by 1), and adjust the confidence of each r as
T, by detecting tuples using rule r, as shown below:

T =T +|tf| - wlt”] ()

where |t*] is the number of tuples that match r while |¢t7| is the
number of tuples that violate r and w is a punish weight (default by
1). However, we notice that T, is still not credible because it is
correct that r violates error tuples, where T}, may be a negative
number. Clearly, to further evaluate T, in a reliable manner, we
need the confidence Ty, of the rule being applied to tuples.

For a tuple t = (AVy,...,AV,,...,AV,) that t + r, we firstly
evaluate the confidence of AV; in t as T; (AV;). And we evaluate
Tiupie according to the minimum of T; (AV;), where AV; is in AVL
or A; is in AVR of r. The reason is that, for the tuple t, once there
are errors in the values, whose attributes are in AV, or AVR of r, it
cannot be trusted to evaluate r. And T;(AV;) is calculated on the
basis of the other rules r’ that can also be applicable to . If a AV; in
t can be verified by r’, we increase T; (AV;) with the confidence of
r’. In contrast, we reduce T; (AV;) when AV; in t violates AVg of r’.

Formally, we initially set all the T; (AV;) default as Ty, and then
calculate T; (AV;) and the Ty, of ¢ that t + r as:

EMW%{ T;(AV;)) +T» if Aj€e AVRof r' && t 1’ 3)
TH(AV)) =T if A€ AVgof r’ && t 1’
Tirr = min (T (AV})) , AV; € AVL||A; € AVR 4)
After this, we reset each T, to Ty and update T, based on T;y.,. We
further consider that a rule cannot be verified as fully trusted even
if it matches a trusted tuple, while the rule has a large likelihood of
being inaccurate if it violates the trusted tuples. Similarly, a rule
cannot be verified as fully trusted when it violates other error tuples.
As a result, we calculate T,.,,;, for each rule r as follows:

iftEr &8 Ty >0
Tr + Tir iftlzr&& Tir <0
Tr - WT“_r ift VZ r && Tﬂ—r >0
T +log (1+ |Tpr|) if t r && Toer <0

Tr +1log (1 + Tyr)

T, = 5

ExXAMPLE 9. We discuss an example as shown in Figure 3. At first,
we calculate T, based on the detecting results as: T, = T, =
1+1-1=1,T,, =1-1+1 = 1. As the value in City cannot be



Provider ID  City State  County Zip
t1 10001 || Dothan AL Houston || 36301
t, 10001 || Dothan AR Houston || 36301

Calculate

confidence r, : [City = “Dothan”] — [State = “AL"]
r, :[City = “Dothan”] — [State = “AR”]

r,:[Zip = 36301] — [State = “AL”]

Figure 3: Confidence calculation for data and rules.

determined, Ti (City, “Dothan”) = Tz (City, “Dothan”) = 1. While
based on r3, we evaluate that Ty (State, “AL”) = 1+ T,, =1+ 1 =2
and To(State, “AL”) = 1 — T,, = 1 — 1 = 0. Hence, we could calculate
Trupte as: Tr, = min(T1(City, “Dothan”), Ty (State, “AL”)) = 1
and Ty,rr, = min(Tz(City, “Dothan”), To(State, “AR”)) = 0. After
this, we update T,,,j, once again: Tr, = 1+1log(1+ Ty, r) — Ttorr, =
1+ log2. Similar for T,, =1 — 1+ 0 = 0. Based on these confidence,
we could repair t; following ri and update ry to fit t; in subsequent
operations.

4.2 Cleaning Data or Rules based on Confidence

After calculating the confidence of rules and data, we clean both of
them, which can be seen as a co-cleaning problem. We consider that
the co-cleaning problem that data and rules clean each other while
both of them cannot be trusted are similar as the case in the actor-
critic (AC) algorithm. That is, both the actor and the critic are green
hands (the agents without insufficient ability to give appropriate
actions and rewards) at first, and they are trained and updated
iteratively to be asymptotically accurate. Note that the GAN can
also be seen as an actor-critic algorithm in stateless MDPs. As a
result, we train and update the rules and data using the generator
and discriminator while determining which one to repair based on
confidence. Specifically, for each rule r in 3, we detect the tuples
violating it and determine whether to repair the rule or the tuples
according to T,y e and Tyyp.. We discuss the details below and
illustrate the repairing process in Figure 4. The whole process of
the co-cleaning model can be seen in Algorithm 2.

Rule is more confident. When the rule r has a higher confi-
dence than the tuples violating it, we repair the wrong values in
tuples based on r. Generally, we should modify the errors based
on AVg. However, we consider the values that match AV} also
maybe errors, such as “Dothan” of t3 in Figure 4 (a). Here, we
further to determinate where the error is. We denote the confi-
dence of AV; that matches AVy, and violates AVy as Ty gs and Trys,
respectively. Intuitively, Ty gs = min (T;(AV;)),AV; € AVp and
Trus = T: (AV;), A; € AVR. If Trgs > Trys, we repair t according
to r while if Ty s < Trys, we repair ¢ by modifying AV; with the
minimum confidence based on other rules.

As we can see in Figure 4 (a), the tuples #; and f3 violate
the rule ri. We firstly judge which values are the real errors.
For the tuple t1, Tygs = min(Ty(City, “Dothan”)) and Trys =
min(T;(State, “AR”)). As both (City, “Dothan”) and (State, “AR”)
cannot be determined by other rules, Trgys = Trygs = 1. As
a result, we update (State, “AR”) to (State, “AL”) based on r.
For the tuple t3, Tygs = min(T3(City, “Dothan”)) and Trys =

Algorithm 2 Co-cleaning model

Require: dirty dataset D; rules set X
1: for each tuple ¢ in D with its applicable rules in X do
22 Detect t using the rules to calculate Ty, pje, Trule

3. for each rule r that violates ¢t do
4: if T3, > T, then
5 for g-steps of generator do
6: Generate new data by using r to change the values
7 Update G4 by modifying r based on Algorithm 1
8: end for
9: for d-steps of discriminator do
10: Train D using real data and the generated data
11: end for
12: else
13: Calculate Ty s and Trys of t
14: if T gs > Trys then
15: Repair ¢ by modifying the wrong value based on r
16: else
17: Modify the AV; in ¢t with the minimum confidence
18: end if
19: end if
20:  end for
21: end for

min(Ts(State, “CA”)). Similar, Tryys = 1. Meanwhile, we notice that
(Zip, 90242) matches AV}, while (City, “Dothan”) violates AV of
ro. As aresult, Trgs = 1 — T, = —1 < Trgs. And hence, we update
(City, “Dothan”) to (City, “Downey”) based on rs.

Data is more confident. When the confidence of rule is less than
the violated tuples, we update the rule to fit data. However, un-
like repairing data, where a wrong value can be modified directly
based on a ground rule, inaccurate rules cannot be determinis-
tically repaired based on data. Although data is confident, it is
not enough that directly fit the rule to data as it is common that
modify an inaccurate rule to another inaccurate rule. For instance,
the tuple ¢5 in Figure 4 (b) is correct and r3 can be modified to
ry : [City = “monticello”] — [State = “AR”] by fitting it to ts.
However, r3’ is still untrusted as it violates t;. We consider that
rules are defined following the relationships among data. We use
another discriminator Dy to update the generator Gs; and modify
the rules, which is a process of relearning the relationships to adjust
the generated rules. In details, we initialize discriminator Dy with
the parameters of D and then update it by providing real data and
new fake data that is generated based on the untrusted rule. Note
that the real data remains unchanged in this step. Then, given real
data and generated data as input, D; calculates the cross entropy
to update Gg to minE [1 — log D (x)]. Specifically, we repair r in
two aspects: AVp and AVg. In each step, we predict a new AVg
using the same AV based on Gs and generate new data with AV,
When E [1 - log D (x)] < ¢, where ¢ is a small constant (default by
0.01) for robustness, we believe r has been repaired. Otherwise, we
supplement AV} of r as the same in Algorithm 1.

See Figure 4 (b), the rule r3 violates the tuple t5. To repair it in a
reliable manner, we train D, to update G to learn the relationships
once again. In each step, r3 generates a new tuple tpe., as the fake
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Figure 4: Cleaning inaccurate rules and dirty data.

Table 2: Effectiveness of rule discovering on different datasets.

Method HOSP FOOD FLIGHT UIS
P R F1 P R F1 P R F1 P R F1
Tane* 047 042 044 | 041 036 038 | 055 049 052 | 087 046 0.60
FastFD* 062 057 0.60 | 0.61 049 054 | 047 041 044 | 089 0.66 0.76
FD_Mine* | 0.65 0.31 042 | 0.75 046 057 | 0.73 051 0.60 | 094 041 0.57
GARF 099 0.69 081 | 09 065 0.78 | 097 0.74 0.84 | 1.00 0.77 0.87

data. D, receives the fake data and real data as inputs to update
G;. Based on the updated Gg, r3 can be modified and a new tuple
can be generated. Repeat the above operations until D; and Gs
converge, the rule can be repaired by modifying the value in AVg
or adding the condition information in AVy, e.g., r3 can be repaired
as [ProviderID = 40051, City = “Monticello”] — [State = “AR”]
and [ProviderID=111303, City="“Monticello”] — [State=“GA”].

5 EXPERIMENT

The key questions we answer with our evaluations are: (1) Since
GARF is a novel data cleaning framework that generates repair
rules to clean dirty data, how do our generated rules compare in
effectiveness and accuracy to existing widely-used rule discovering
methods? (2) How does the choice of the threshold for generating
rules affect the methods performance? (3) How does GARF compare
in quality to state-of-the-art data cleaning methods with differ-
ent number of given constraints? (4) How do dirty data affect the
method performance for datasets with different error rate? (5) Al-
though GARF is self-supervised and there is no demand for labels or
other information, can we employ GARF to repair the existing rules
for other methods and achieve better performance? (6) What are
the advantages of GARF compared with other deep learning-based
data cleaning methods? (7) What are the potential sources of gains
for GARF? (8) What about the efficiency of GARF?

5.1 Experiment Settings

Datasets. We perform our experiments on both real-life and syn-
thetic datasets: (1) Hospital information dataset (HOSP): This is
a benchmark dataset used in many literatures [18, 39], which is
taken from the US Department of Health Services. It consists of
100K tuples with 10 attributes. (2) Food dataset (FOOD): This is
a real dataset from the City of Chicago with information on in-
spections of food establishments [38]. It consists of 200K tuples

with 13 attributes. (3) Flight dataset (FLIGHT): This dataset con-
tains data on the departure and arrival time of flights from different
data sources [32]. It consists of 50K tuples with 6 attributes. (4) Ad-
dress dataset (UIS): This is a synthetic dataset generated by the UIS
dataset generator [2]. It consists of 100K tuples with 11 attributes.
Following many state-of-the-art methods [27, 43], we treat the
original datasets as clean data, and dirty data is generated by adding
noise with a certain rate e%, i.e., the percentage of dirty tuples on
all data tuples (10% by default). For instance, a error rate of 30%
means that 70% of the tuples are clean and the remaining 30% of
the tuples have errors. We introduced three types of noise: missing
values, typos, and errors from the active domain.
Baselines. For comparison, we implement three kinds of state-of-
the-art methods for cleaning dirty data.
(1) We firstly implement different combinations of typical con-
straints discovery methods [8] with a well-studied data repair
method FD-DR [43] as follows:
(i) Tanex: Tane [30] + CTane [21] + FR-DR;
(ii) FastFD=: FastFD [46] + FastCFD [21] + FR-DR;
(iii) FD_Mine*: FD_Mine [49] + CFD_Miner [21] + FR-DR;
where Tane, FastFD, FD_Mine are the state-of-the-art algorithms
for discovering FDs [34] while CTane, FastCFD, CFD_Miner are the
common algorithms for discovering CFDs [36].
(2) Next, we compare GARF with two state-of-the-art automated
data cleaning methods, including (i) WMRR-DR [2]: a logical data
cleaning method, which can discover repair rules only based on
constraints with dirty data, and (ii) Holoclean [38]: a data cleaning
system that uses learning and probabilistic inference to produce
repairs.
(3) Finally, we compare our approach with another deep learning-
based method: (i) Baran [32]: a novel error correction system that
fixes data errors with respect to their value, vicinity, and domain
contexts; (ii) language models, including BERT, RoBERTa and GPT-
1: modelling data distribution based on self-attention and repair
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Figure 5: Evaluation results at different thresholds.

wrong values by predicting the correct ones.

Metrics. To evaluate the performance of different methods, we
report the following metrics: (1) Precision (P): The number of cor-
rectly repaired tuples over the total number of repaired tuples in
data, which assesses the correctness of repairing; (2) Recall (R): the
number of correctly repaired tuples over the total number of dirty
tuples, which assesses the completeness; (3) F1—score: the harmonic
mean of precision and recall, which computed as 2(P X R)/(P + R).
Implementation. GARF is implemented in Python. We run the
experiments on the machine with 12-core 3.20GHz i7-8700 and
16GB main memory.

5.2 Effectiveness of Rule Discovering

Let’s first focus on the effectiveness of rule discovery. We report
the precision, recall, and F1-score obtained by GARF and competing
baselines in Table 2. As we can see, GARF outperforms all baselines
in terms of the Fl-score in all the datasets as our approach in
formulating data cleaning achieves both high precision and recall. In
fact, since GARF generates rules based on the learned relationships
among data rather than statistical information, such as the co-
occurrences frequency and support rate, the generated rules can be
much more comprehensive than other baselines. In addition, the
rules are fine-grained, making the repair results more accurate. As
a result, GARF can repair more dirty tuples with greater accuracy.

In addition, we observe that the results on FLIGHT and UIS are
generally better than that on HOSP and FOOD. This is due to the
fact that FLIGHT and UIS have more frequent patterns for each
constraint. And when the ratio of frequent patterns is less than the
threshold (defaulted by 0.6), some constraints and rules may not be
discovered. Thus, we further examine how the performance results
change at different thresholds.

As shown in Figure 5, we vary the thresholds for each method
and compare precision and recall on the HOSP and FOOD datasets,

respectively. As expected, as the threshold increases, the filter to
distinguish constraints in baselines becomes stricter, which gen-
erally leads to a larger precision with a smaller recall. Noted that,
when the threshold is at a low degree, there are many spurious
constraints that may lead to new errors. And with the threshold
increase, the number of spurious constraints reduces, which also
improves the recall. In contrast to traditional methods, GARF does
not adapt a fixed threshold to discover rules based on frequent
patterns. GARF generates repair rules by learning the dependency
relationships in datasets based on a SeqGAN model. Furthermore,
to make the generated rules more trusted, GARF detects and re-
pairs inaccurate rules by competing with dirty data based on the
dynamic confidence measure, which is self-adaptive. The whole
process is self-supervised and data driven, rather than requiring
experts to set constant thresholds for different datasets. So, GARF
always maintains stable results and outperforms other baselines.

5.3 Effectiveness of Repairing Quality

After demonstrating the effectiveness of GARF in rule discovery,
we further compare repair quality with other state-of-the-art data
repair methods. Note that although these methods are usually ca-
pable of obtaining good repair performance, most of them require
existing constraints as prior knowledge. To this end, we compete
the evaluation results of GARF with baselines by giving different
number constraints. We randomly select different numbers of con-
straints (# Constraints) from all constraints discovered in Section 5.2
and compare precision, recall, and F1-score in different datasets in
Table 3.

As we can see, when # Constraints is small, both precision and
recall of WMRR-DR and Holoclean are at a low degree. And their
results improve with the increase of # Constraints. Specifically, their
recall increases with # Constraints nearly linearly at first and then
slows down until constraints cover most attributes. Moreover, we
observe that when constraints are not enough, many inaccurate
rules can be kept, leading to a low precision. And with increasing
constraints, many incorrect rules can be deleted by inconsistency
resolution. Furthermore, it can be seen that WMRR-DR performs
better on FLIGHT and UIS, while it performs worse on HOSP and
FOOD. The reason is that WMRR-DR repairs data based on fixed
rules, which benefits from frequent patterns, while Holoclean re-
pairs data based on learning and probabilistic inference. Clearly,
GARF owns the advantages of both of them and can always achieve
better performance on different datasets without any prior knowl-
edge given.

5.4 Robustness and Flexible Analysis

As mentioned above, dirty data can lead to inaccurate rules, which
can also affect the quality of repair results. Consequently, to demon-
strate the robustness of our approach, we examine the impact of
errors on repair quality and report the results in Table 4, where
we vary the error rate from 10% up to 90% with a step of 20%.
The results show that as the error rate increases, precision and
recall of all the methods naturally drops. In fact, we observe that
missing values can lead to many useful rules cannot be found,
which reduces the recall of baselines. Meanwhile, the typos in
datasets diminish the trustworthy evidence, and there are not only



Table 3: Repairing performance on different datasets.

. HOSP FOOD FLIGHT UIS
Method # Constraints P R I P R I P R I P R I

10 0.53 030 0.38 0.41 0.29 034 | 038 032 0.35 0.45 0.26 0.33

20 0.64 043 0.51 0.56 0.40 0.47 0.54 049 0.51 0.53 043 047

WMRR-DR 30 0.72 052 0.60 0.62 048 054 | 0.72 0.62 0.67 0.72 057 0.64
40 0.78 0.57 0.66 0.68 0.56 0.61 0.85 0.65 0.74 0.89 0.66 0.76

50 0.83 059 0.69 0.74 058 0.65 0.87 0.66 0.75 0.91 0.71 0.80

10 0.59 0.23 0.33 0.44 0.21 0.28 0.53 0.29 0.37 0.44 0.18 0.26

20 0.64 039 048 0.56 038 0.45 0.64 043 0.51 0.59 032 041

Holoclean 30 0.72 0.53 0.61 0.62 0.51 0.56 0.72 0.59 0.65 0.68 0.45 0.54
40 0.79 0.65 0.71 0.87 0.63 0.73 0.84 0.63 0.72 0.75 0.58 0.65

50 0.85 0.69 0.76 091 0.67 0.77 0.85 0.63 0.72 0.88 0.68 0.77

GARF 0 099 069 081|096 065 078 097 0.73 0.83 | 1.00 0.77 0.87

Table 4: Precision comparison by varying error rates.

Dataset | Exror-rate WMRR-DR | Holoclean GARF
P R P R P R
10% 0.83 0.59 0.85 0.69 | 0.99 0.69
30% 0.68 0.54 0.71  0.59 0.98 0.63
HOSP 50% 0.43 0.39 0.65 0.42 | 098 0.55
70% 0.37 0.20 0.51 0.37 | 0.97 0.51
90% 0.25 0.17 0.27 0.33 | 095 0.36
10% 0.85 0.59 091 0.67 | 0.96 0.65
30% 0.64 0.51 0.88 0.59 | 0.96 0.64
FOOD 50% 0.40 0.35 0.67 0.52 | 0.95 0.60
70% 0.31 0.26 0.43 041 | 094 0.58
90% 0.19 0.17 0.26 0.25 | 0.94 047

Table 5: Hybrid methods.

Method Dataset P R F1
HOSP | 099 073 084

FOOD 0.98 0.71 0.82

GARE +WMRR-DR | prioir | 10 079 088
UIS 1.0 0.82 0.90

HOSP | 098 072 083

FOOD 098 0.69 0.81

Gare +Holoclean | wonr | 10 075 086
UIS 099 0.74 0.85

rules missing but also some inaccurate rules generated, which re-
duces both precision and recall. Furthermore, errors from the ac-
tive domain can lead to new errors even if the rules are correct.
For example, [City = “Dothan”] — [State = “AL”] is a correct
rule, while (Dothan, CA, LosAngeles, . ..) is an error tuple where
“Dothan” should actually be “Downey”. Clearly, it is still inaccurate
to repair the tuple using the rule. Unlike baselines, GARF repairs
data following learned relationships, which are continuously up-
dated with repair. Incorrect rules can be detected and repaired in
a reliable manner. Moreover, we evaluate the confidence of each
attribute value pair used in the rule to guarantee that the repaired
one is a real error. As a result, GARF always keeps an excellent
performance with high robustness.

Furthermore, we consider that City — State is inaccurate for
the whole HOSP dataset, as discussed in Example 8. Similarly,

Facility — Risk is also inaccurate although the Risk of more than
half Facility with “restaurant” is “high” in FOOD dataset. Obvi-
ously, there are always many incorrect constraints in practical
cases, can we repair them based on our approach for other methods
and achieve better performance? Actually, GARF is flexible that,
although it does not have prior knowledge requirements, it can
help to improve existing constraints and take advantage of such
constraints to achieve better performance. Thus, we implement
combinations of our framework with WMRR-DR and Holoclean as
GARrRF +WMRR-DR and GArr +Holoclean, respectively. The results
are reported in Table 5. Clearly, the rules repaired by GARF can be
trusted enough and the hybrid methods based on these rules can
achieve high accuracy.

Table 6: Comparison with language models.

Method | HOSP | FOOD | FLIGHT | UIS
BERT 0.41 0.39 0.52 0.42
RoBERTa | 0.42 0.39 0.53 0.42
GPT-1 0.32 0.28 0.45 0.34
GARF 0.99 0.96 0.97 1.00

5.5 Comparison with Deep Learning Methods

Since GARF considers the tuples in datasets as sequences and learns
the dependency relationships in the sequences, which is similar as
a Natural Language Processing (NLP) task, we then evaluate the
results that repair data directly using other language models. For
comparison, we use BERT, RoBERTa and GPT-1 to impute the data
values which are detected as errors in our method because those
models cannot detect errors in raw data.

Table 6 shows that GARF has the highest precision in all datasets.
The reason is that GARF repairs data based on the rules that have
been verified and repaired while other models repair data directly
based on the prediction for values, which are probabilistic. In the
NLP tasks, some approximate values may be accepted, however, it
is unreasonable that repair data in datasets using such values.

Interpretability. GARF has a unique advantage on interpretability,
while most DL-based methods can repair the wrong value but the
repaired value is hard to interpret, which leads to the wrong re-
pairs that can hardly be found and repaired by humans. Instead of



Table 7: Sample learned rules on different datasets.

Datasets Data repair Rules (AV, — AVR) Confidence
[City = “Dothan”, State = “AL”] — [Country = “Houston”] 37
HOSP [City = “Monticello”] — [State = “GA”] -15
[MeasurelD = “OP_33"] — [Condition = “Caner care”] 20
[AKA Name = “THE EDGE’| — [BDA Name = "GOLDEN NUGGET"] 6
FOOD [Address = “525 E 130TH ST”, AKA Name = “ROSEBUD FARM INC”] — [Facility = “Grocery Store”] 7
[License = 14616, Facility = “Restaurant”] — [Risk = “High”] -12
[Flight = “AA-4307-ORD-DTW”| — [Sched_dep_time =" 6 : 45p.m.”] 8
FLIGHT [Sched_dep_time = “7 : 10 a.m.”, Act_dep_time = “7 : 16 a.m.”] — [Sched_arr_time = “9: 40 a.m.”|
[Src = “Boston”, Flight = “AA-1434-DFW-MCO”] — [Act_dep_time = “7 : 21 a.m.”] 7
[CUID = 4719] — [City = “Cedar Bluf f”] 47
uIs [APMT = “2h6”] — [Zip = 68653] 66
[City = “Platte Center”, Lname = “Orleman”] — [State = “NE”] 52

modifying values directly, GARF repairs data based on the learned
repair rules with confidence measure as shown in Table 7, which
is easy to be understood. And even there are still some inaccurate
rules, they can be found and repaired easily by humans.

5.6 Ablation Study

Since GARF has been demonstrated to be effectiveness with high
accuracy, we finally evaluate what the potential sources of gains for
GARF are: the rule generation model (including the generator and
discriminator) and the co-cleaning model. In order to understand
how each of them affects the performance of GARF, we exclude
some of them and compare the precision of the resulting architec-
tures against the full GARF architecture: (1) GARF w/o co-cleaning:
we exclude the co-cleaning model and repair data using the gen-
erated rules directly. (2) GARF w/o discriminator: we exclude the
discriminator and generate rules only based on the generator, which
can be seen as converting GAN structure to LSTM. (3) GARF w/o
Gates & discriminator: we exclude the gates that are used to trans-
mit or forget memories and the discriminator, which can be seen
as converting the GAN structure to RNN. (4) GARF w/o Gates &
discriminator & co-cleaning: we only keep the generator with a
RNN structure and exclude all other components. Table 8 shows
the performance of GARF with different components.

As we can see from Table 8, there is a significant drop in both
precision and recall without the co-cleaning model because the
wrong rules cannot be detected and repaired. When we exclude
the discriminator, the relationships are learned only based on the
generator (LSTM) while a simple LSTM cannot capture the relation-
ships accurately, which leads to many rules being generated and
may not be repaired in co-cleaning. Besides, we also observe that
the reasoning ability of rules reduces when excluding the gates in
generator as it cannot transmit or forget long memories. Finally,
when all the gates, the discriminator and the co-cleaning model are
excluded, the generated rules include many errors and clean data
based on such rules can lead to disastrous results.

In fact, comparing with a vanilla neural network model (e.g,
LSTM), the GAN model benefits form the discriminator to achieve
better performance. Although the discriminator may lead to the
generator "overfit" to the real ones, and "overfit" is a disadvantage
for deep learning models in most cases, it is an advantage for repair-
ing data because the repaired values are expected to be identical

as the real correct ones. By learning using the generator, updating
using the discriminator, and repairing based on the co-cleaning, we
can finally obtain clean data and trusted data repair rules.

5.7 Runtime Results

We report the running times results of our framework with baselines
in Table 9. As we can see, for dirty datasets with all the methods
have not been trained, WMRR-DR outperforms the running time as
it repairs data only based on logical rules, and the learning-based
methods require more time on statistical learning, inference, or
modeling data distribution. However, we believe that optimizing
machine runtime efficiency is not the main goal of data cleaning
methods as improving effectiveness and reducing human involve-
ment are more important objectives.

Although efficiency is not the main concern of GAREF, it also
has an unique advantage in running time. Most existing learning-
based methods have the limitation that models need to be executed
integrally for each repair task. Unlike such methods, GARF takes
advantage of both logical data cleaning and learning-based data
cleaning. GARF converts the dependency relationships learned by
the machine to interpretable rules, which can be seen as general
knowledge in the related domain (such as medical rules in the
medical domain and address rules in the address domain). As a
result, our approach can be seen as "off-line", which is independent
of repair tasks. Once the training is completed, we can deal with
subsequent cleaning tasks at a low runtime cost.

6 RELATED WORK

Logical Data Cleaning. A number of articles have investigated
the logical data cleaning problem based on constraints and rules
[3, 13]. They explore consistent databases by computing repairs
that minimally change the data instance to satisfy a set of con-
straints [39]. To clean dirty data, different constraints are employed
such as FDs [5, 45], CFDs [20], MDs [19], denial constraints [11]
and neighborhood constraints [40]. As a result, many constraints
discovery methods have been proposed, e.g., Tane [30], FastFD [46],
and FD_Mine [49]. However, these constraints mainly focus on
the static analyses for satisfiability and implication problems [6, 7],
leading that they can determine whether a tuple is dirty or not, but
they cannot explicitly specify how to repair the errors [43].



Table 8: Ablation Study.

Method HOSP FOOD FLIGHT UIS
P R F1 P R F1 P R F1 P R F1
GARF 0.99 069 081 | 09 0.65 078 | 0.97 0.73 0.81 | 1.00 0.77 0.87
GARF w/o0 Co-cleaning 0.76 053 0.62 | 0.58 0.49 053 | 0.51 049 0.50 | 0.79 0.62 0.69
GARF w/o Discriminator (convert GAN to LSTM) 0.83 0.56 0.67 | 0.74 0.55 0.63 | 0.85 0.52 0.65 | 0.84 0.59 0.69
GARF w/o0 Gates & Discriminator (convert GAN to RNN) | 0.81 0.35 0.49 | 0.72 0.28 0.40 | 0.81 0.48 0.60 | 0.81 0.40 0.54
GARF w/o Gates & Discriminator & Co-cleaning 0.12 011 0.11 | 0.09 0.07 0.08 | 0.25 0.18 0.21 | 0.15 0.12 0.13

Table 9: Runtime on different datasets (minutes).

Datasets
Method HOSP | FOOD | FLIGHT | UIS
WMRR-DR 5 13 2 5
Holoclean 26 75 6 22
Baran 42 102 15 38
GARF 73 185 12 51
GARF (Training finished) 4 10 2 4

To this end, various repairing models are proposed to generate
ground rules and repair data in a determinate manner. [44] proposes
fixing rules that encode constant values in the rules. Chu et al.
[11] tackle the problem in a unified framework that can express
rules involving numerical values with predicates. Nevertheless, to
obtain high-quality rules, these methods often require external
information about the golden standard, which normally comes
from domain experts, or knowledge bases. Fixing rules [43] require
experts to examine the rules that are in conflict. Fan et al. [22]
define editing rules depending on master data and user verification
to perform reliable repairing. Hao et al. [29] use knowledge bases to
generate deductive rules to fix errors, and the links between dirty
databases and knowledge bases are still user guided. Unfortunately,
involving users is typically costly and error-prone, and the required
domain experts and knowledge base may not be available or without
enough capacity. To this end, WMRR-DR [2] is proposed as the first
automatic rules discovery method for data repairing, but a set of
given FDs over target dataset is still necessary.

Furthermore, there are an increasing amount of literature for
data cleaning on noisy datasets. Golab et al. [25] adopt a set of CFDs
to modify the embedded FD for better fitting the data. However,
modifying the data and relative trust were not discussed. Chiang et
al. [9] address the problem based on a cost model that quantifies
the trade-off of when an inconsistency is a true data error vs. an
update to the model.

Different from the previous works, GARF targets at generating
repair rules in an automated and sufficient manner. GARF provides
a self-supervised rule generation model that learns dependency
relationships from data and generates fine-grained data repair rules.
The whole process is only based on the data in hand without human
and prior knowledge, and the generated rules are sufficient, which
can break the limitations of domains and languages.

Learning-based Data Cleaning. ML-based methods are also al-
ways employed for data cleaning. In contrast to logical data cleaning
methods that require a lot of efforts to build rules, ML-based meth-
ods perform statistical repairing by applying probabilistic to infer

the correct data. However, these methods are typically supervised
since they heavily require training data and rely on the chosen
features, such as Guided data repair [48] and SCAREd [47].

Recently, with the great success of deep learning in machine
learning, artificial neural networks have gradually been introduced
to data repairing [26, 42]. These methods can exploit potential char-
acteristics of data, which are benefit for comprehensive repairing
and self-supervised learning. However, due to the inexplicability of
neural networks, the result of repairing can hardly be interpreted
to humans. As a result, existing explainable data repair methods
can hardly deal with the limitation caused by deep learning. [37] ex-
tracts the explanation by cleaning a small set of tuples by users and
inferring the constraint underlying those repairs. Unfortunately,
users cannot understand the reason for repairing operations and dis-
tinguish which operations are wrong only based on the parameter
networks. Furthermore, many deep learning models are designed
for images or continuous data, and these methods have limitations
with discrete relational data. GAIN [50] is a data repair method for
missing data imputation, which builds a GAN model to impute the
missing values. Although it performs well on numerical data, it is
not fit for categorical values.

To tackle the challenges above, we take advantages of both logical
data cleaning methods and learning-based data cleaning methods.
We utilize SeqGAN to learn the dependency relationships among
data rather than updating values directly. We convert the learned
relationships to data repair rules, which are deterministic and have
high interpretability. The whole process is completely data-driven
without human and external information.

7 CONCLUSION

In this paper, we propose GARF, a self-supervised framework to gen-
erate trusted data repair rules and to clean dirty data. Our approach
can be completely data-driven without human supervision and pri-
ori knowledge. By learning the dependency relationships among
data based on SeqGAN, we could generate lots of fine-grained data
repair rules with no requirements of domain knowledge or labeled
training data. Extensive experiment results demonstrate that our
approach is able to effectively clean dirty data and outperforms
state-of-the-art methods. And the whole framework is robustness,
flexible with high interpretability.
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