A Novel Cost-Based Model for Data Repairing

(Extended Abstract)

Shuang Hao! Nan Tang?

Guoliang Lif

Jian He! Na Ta® Jianhua Feng'

"Department of Computer Science, Tsinghua University, Beijing, China
tQatar Computing Research Institute, HBKU, Qatar
{haos13, hejl13, danl13} @mail.thu.edu.cn, ntang@hbku.edu.qa, {liguoliang, fengjh} @tsinghua.edu.cn

Abstract—Integrity constraint (IC) based data repairing is
typically an iterative process consisting of two parts: detecting
and grouping errors that violate given ICs; and modifying values
inside each group such that the modified database satisfies
those ICs. However, most existing automatic solutions treat the
process of detecting and grouping errors straightforwardly (e.g.,
violations of functional dependencies using string equality), while
putting more attention on heuristics of modifying values within
each group. In this paper, we propose a revised semantics of
violations and data consistency w.r.t. a set of ICs. The revised
semantics relies on string similarities, in contrast to traditional
methods that use syntactic error detection using string equality.
Along with the revised semantics, we also propose a new cost
model to quantify the cost of data repairing by considering
distances between strings. We show that the revised semantics
provides a significant change for better detecting and grouping
errors, which in turn improves both precision and recall of the
following data repairing step. We prove that finding minimum-
cost repairs in the new model is NP-hard, even for a single FD.
We devise efficient algorithms to find approximate repairs.

I. INTRODUCTION

Data cleaning has played an important part in data manage-
ment. Although involving users in data repairing is necessary
in practice, automatic repairing is still valuable, e.g., they can
help find possible repairs, which can alleviate the burden of
users in the loop of data cleaning.

Consider an FD ¢ : (country — capital), and three tuples
t1(China, Beijing), t2(China, Tokyo), and ¢3(Chine, Beijing),
where errors are highlighted in bold font. Here, ({1, t2) violate
1. There are two main shortcomings by directly following
the definitions of FDs. (i) Unrobust error detection: Some
erroneous tuple values cannot be captured such as t3[country]
since no tuple has the same country value as t3; and (ii) Bad
error group: When associating t; with ¢ since they together
violate ¢; and trying to repair one of them, most repairing
algorithms are likely to fail since no algorithm can repair
to[country] from China to Japan.

The above observations call for a revision of data repairing
problems that improves both (i) and (ii) discussed above.
Intuitively, improving (ii) can increase the precision, and
enhancing (i) will advance recall.

In this paper, we propose a novel cost-model for data re-
pairing, motivated by the above two observations. Specifically,
we make the following contributions. (1) We propose a new
cost-based model. We show that finding the optimal solution
is NP-hard. (2) We devise new data repairing algorithms, for
handling both a single constraint and multiple constraints. (3)

We study optimization techniques to improve the efficiency
of data repairing. (4) We conduct extensive experiments,
which demonstrate that our method outperforms state-of-the-
art automatic data repairing approaches in accuracy.

II. PROBLEM FORMULATION

Consider an instance D of relation R. To simplify the
discussion, we focus on functional dependencies (FDs).
A. Functional Dependencies and Semantics

We use a standard definition for an FD ¢: X — Y. We
say that D satisfies o, denoted by D | ¢, if for any two
tuples (t1,t2) in D, when t1[X] = t2[X], t1[Y] = t2[Y] holds.
Otherwise, we call (¢1,t2) a violation of ¢, if ¢;[X] = t2[X]
but tl[Y] # t2 [Y]

Moreover, we say that D is consistent w.r.t. a set X of FDs,
denoted by D =%, if D |= ¢ for each ¢ € X.

To address the two limitations of automatic repairing algo-
rithms discussed in Section I, we use a similarity function
to holistically compare both left and right hand side of
constraints. More specifically, given an FD ¢: X — Y, we use
a distance function dist,() to capture violations. We simply
write dist() when ¢ is clear from the context. We also write
t¥ for t{X UY].

Distance function. For attribute A in R, dist(¢1[A], t2[A])
indicates how similar ¢;[A] and ¢2[A] are. There are many
known distance functions, e.g., Edit distance, Jaccard distance,
and Euclidean distance. In this paper, by default, we use edit
distance if ¢1[A] and t5[A] are strings and Euclidean distance

if the values are numeric. Any other distance function can also
be used. Formally, we have:

. _ | Edit(t1[A], t2[A]) string
dist(t2[A], t2[A4]) = {Eucli(tl[A},tg[A]) numeric)
where dist(t1[A], t2[A]) is a normalized distance in [0,1].
For ¢ and t§ with multiple attributes, their distance is:
dist(t7,t5) = wi Y dist(t1[Al], ta[Ai])+
Ajex)
w, Yy dist(t1[A], ta[Ar]).
AreYy

where w;, w, are weight coefficients in [0,1] and w;+w, = 1.

Fault-tolerant violation. Two tuples (¢;,¢2) are in a fault-
tolerant (FT-) violation w.r.t. ¢, if (1) ¢ # t¥; and (2) the
distance between them is no larger than a given threshold 7,
ie., dist(t],t5) < 7. We write (t1,t2) J& ¢ if both (1) and (2)
hold (i.e., an FT-violation); otherwise, we write (¢1,t3) ¢ if
dist(t7,t¥) > 7. A possible method of deciding the threshold

7 is as follows. We first calculate the distance of each pair
of tuples (t7,t¥) and sort them in ascending order. When
the difference between the two adjacent numbers suddenly
becomes large, we choose the smaller value 7 as the threshold.

Fault-tolerant consistency. A database D is fault-tolerant (FT-
) consistent to an FD ¢, denoted by DE= ¢, if there do not exist
two tuples ¢y, to such that (¢1,ts) & ¢. We say that D is FT-
consistent w.r.t. a set ¥ of FDs, denoted by DE Y, if DE ¢
for each ¢ € X.

Consistency vs FT-consistency. The FT-consistency semantics
means that if two tuples on attributes X U Y are similar but
not identical, they are FT-violated. It is readily to see that in
the case of 7 > w,|Y| (where |Y] is the number of attributes
in Y), if a database D is FT-consistent w.x.t. ¢, it must be
also consistent. Considering w; = 1, w, = 0,7 = 0, if D is
consistent, it must be also FT-consistent, and vice versa.

B. Problem Statement

Close-world data repair model. The repaired value for an
attribute A must come from the active domain of A.

Valid tuple repair. Repairing a tuple from ¢ to ¢ (¢ may not
be in D originally) is called a valid tuple repair, if for any
FD ¢, there exists a tuple t” in D such that ¥ = ¢#. In
other words, the whole tuple ¢ may be new to D; however,
the projected values ¢’ must exist in D originally.

Valid database repair. A database D’ is a valid database
repair of D w.rt. a set X of FDs in FT-consistent semantics,
if D’ is FT-consistent w.r.t. X only via valid tuple repairs.

Repair cost. For each tuple ¢ in D, suppose t' is the cor-
responding tuple in the repaired database D’. Obviously, if
t = t/, the repair cost is 0; otherwise we use the distance
functions to quantify the repair cost as below.

cost(t,t') = Z dist(t[A], t'[A]). 3)

A€R
Naturally, the repair cost of database D is
cost(D,D') = Z cost(t,t'). 4)
teD

Problem statement. Given a database D and a set > of FDs
defined on D, the data repairing problem is to find a valid
repair D’ of D such that D’ is FT-consistent and cost(D, D)
is minimum among all valid repaired databases.

ITI. ALGORITHM FRAMEWORK
A. Single FD
Graph model. Given a database D and a single FD ¢, we
first transform it to a graph G(V,). Each vertex v € V is a
tuple, and an undirected edge between two vertices u and v
indicates that (u,v) is an FT-violation w.r.t. . Each edge is
associated with a weight, denote by w(u,v) = cost(u?, v¥).

Repairing based on a maximal independent set. A maximal
independent set Z* of G has some salient properties. (1) Tuples
in Z* have no FT-violations and are thus FT-consistent. (2) Any
tuple that is not in Z* must have FT-violations with at least
one tuple in Z*. Based on these two features, we can repair the

database using a maximal independent set as follows. Given
a maximal independent set Z*, for any tuple x not in Z*, let
N(z) = {v|v € Z* and (v,z) € £} denote the neighbor set of
x in Z*. We can repair z to any tuple v € N'(z) (by modifying
¥ to v¥ in order to resolve the violation between them) and
the repairing cost is w(z,v). Naturally we want to repair z
to v with the minimal cost, i.e., w(x,v)<w(z,u) for any u €
N(z), and the cost of repairing = given Z* is cost(z|Z*) =
w(x,v). We enumerate every tuple not in Z*, and iteratively
repair all tuples in D using Z* and get a repaired database
D’. The total cost of repairing D given Z* is cost(D,D’) =
cost(D|Z%) = 3_, v\ z+) cost(z|Z7).

Optimal Repairing. We enumerate every maximal indepen-
dent set, select the independent set (ZP) with the minimal
repairing cost, i.e., cost(D|ZP) < cost(D|Z*), called the best
maximal independent set, and use Z? to repair the database.

Repairing Algorithms. We prove that using the best maximal
independent set Z? to repair D is optimal and NP-hard, and
propose an expansion-based algorithm to find the optimal
result and a greedy algorithm to find an approximate result.

B. Multiple FDs

For multiple FDs with common attributes, we need to repair
them jointly to avoid repairing conflicts on the common
attributes. We prove that this problem is also NP-hard. We
also propose an algorithm to find the optimal result and two
heuristic algorithms to find approximate results [4].

IV. EXPERIMENTAL STUDY

Datasets. We used one real-world dataset HOSP and one syn-
thetic dataset TAX. (1) HOSP was taken from the US Depart-
ment of Health Services (http://www.hospitalcompare.hhs.gov/).
We used 20k records with 19 attributes and 9 FDs. (2) TAX
was generated by a generator http://www.cs.utexas.edu/users/ml/
riddle/data.html. Each record represented an individual’s address
and tax information. It had 9 FDs. Errors were produced by
adding noises with a certain rate e%, ie., the percentage of
dirty cells over all data cells w.¢. all FDs.

Baselines. We compared with NADEEF [2], Unified Repair
Model (URM) [1] and Llunatic [3] for FD repairs. Experiments
show that our approach significantly outperforms existing
automatic repair algorithms in both precision and recall.

ACKNOWLEDGMENT
Guoliang Li was supported by 973 Program of China

(2015CB358700), NSF of China (61422205, 61373024,
61632016, 61472198, 61661166012), Shenzhou, Tencent,
FDCT/116/2013/A3, and MYRG105 (Y1-L3)-FST13-GZ.

REFERENCES

[1] F. Chiang and R. J. Miller. A unified model for data and constraint repair.
In ICDE, 2011.

[2] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang. NADEEF: a commodity data cleaning system.
In SIGMOD, 2013.

[3] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The llunatic data-cleaning
framework. PVLDB, 6(9), 2013.

[4] S. Hao, N. Tang, G. Li, J. He, N. Ta, and J. Feng. A novel cost-based
model for data repairing. In TKDE, 2016.

