
Interactive Cleaning for Progressive Visualization
through Composite Questions

Yuyu Luo† Chengliang Chai† Xuedi Qin† Nan Tang‡ Guoliang Li†
†Tsinghua University, China ‡QCRI, Hamad Bin Khalifa University, Qatar

{luoyy18@mails., chaicl15@mails., qxd17@mails., liguoliang@}tsinghua.edu.cn, ntang@hbku.edu.qa

Abstract—In this paper, we study the problem of interactive
cleaning for progressive visualization (ICPV): Given a bad visu-
alization V , it is to obtain a “cleaned” visualization V ′ whose
distance is far from V , under a given (small) budget w.r.t. human
cost. In ICPV, a system interacts with a user iteratively. During
each iteration, it asks the user a data cleaning question such
as “how to clean detected errors x?”, and takes value updates
from the user to clean V . Conventional wisdom typically picks a
single question (e.g., “Are SIGMOD conference and SIGMOD the
same?”) with the maximum expected benefit in each iteration.
We propose to use a composite question – i.e., a group of single
questions to be treated as one question – in each iteration (for
example, Are SIGMOD conference in t1 and SIGMOD in t2
the same value, and are t1 and t2 duplicates?). A composite
question is presented to the user as a small connected graph
through a novel GUI that the user can directly operate on.
We propose algorithms to select the best composite question
in each iteration. Experiments on real-world datasets verify
that composite questions are more effective than asking single
questions in isolation w.r.t. the human cost.

I. INTRODUCTION

Data visualization plays a key role in impacting strategic and
operational decisions of today’s data-driven businesses [28],
[29]. However, data visualizations are not always exact and
good, and the uncertainty of data visualization [15], [35] may
misguide users by showing false discoveries [6]. One common
reason for generating such bad (uncertain) visualizations is
because real-life data is dirty [2].

Example 1: Table I shows publications from multiple sources.
Dirty Citations cells are marked by red. Duplicated records
are marked by the same color on attribute Id. Besides, it also
contains unstandardized values such as “Very Large Data

Bases” and “VLDB”. The ground truth of Table I is given
in Table II. For example, t123 in Table II is the consolidated
record for tuples t1, t2, and t3 in Table I.
[An Incorrect Bar Chart] Figure 1(a) is a bar chart about the
#-total of Citations grouped by Venue. Due to various types
of errors, the visualization is incorrect. For example, dupli-
cated bars: “SIGMOD Conf.”, “ACM SIGMOD”, “SIGMOD”, and
“SIGMOD’13” should be merged, t2 has an outlier at attribute
Citations that affects the bar “SIGMOD Conf.”, and t7 has a
missing Citations value that affects the bar “VLDB”. 2

However, a visualization is not necessarily dirty, even if the
data is dirty. Consider another example.

Example 2: [A Correct Pie Chart] Figure 1(b) shows the
proportion of the #-publications by Year and the result is

Id Year Title (abbr.) Venue Affiliation Citations
t1 2013 NADEEF ACM SIGMOD QCRI 174.0
t2 2013 NADEEF SIGMOD Conf. QCRI, HBKU 1740
t3 2013 NADEEF SIGMOD QCRI HBKU 174.0
t4 2013 KuaFu ICDE 2013 Microsoft 15.0
t5 2013 TsingNUS SIGMOD’13 Tsinghua 13.0
t6 2013 TsingNUS SIGMOD’13 THU 13.0
t7 2014 SeeDB VLDB Stanford Univ. N.A.
t8 2014 SeeDB Very Large Data Bases Stanford 55.0
t9 2015 Elaps ICDE NUS 42.0
t10 2015 Elaps IEEE ICDE Conf. 2015 CS@NUS 44.0

TABLE I
AN EXCERPT OF PUBLICATIONS (DIRTY)

Id Year Title (abbr.) Venue Affiliation Citations
t123 2013 NADEEF SIGMOD QCRI 174.0
t4 2013 KuaFu ICDE Microsoft 15.0
t56 2013 TsingNUS SIGMOD Tsinghua 13.0
t78 2014 SeeDB VLDB Stantford Univ. 55.0
t910 2015 Elaps ICDE NUS 43.0

TABLE II
AN EXCERPT OF PUBLICATIONS (GROUND TRUTH)

20%

20% 60%

2013 2014 2015
SIGMOD Conf.

ACM SIGMOD

SIGMOD

Very Large Data Bases

IEEE ICDE Conf. 2015
ICDE

SIGMOD'13

ICDE 2013

VLDB

0 450 900 1350 1800

0

15

26

42

44

55

174

174

1740

SUM (Citations)

(a) An Incorrect Bar Chart (b) A Correct Pie Chart

�1

Fig. 1. Example Visualization on Table I

not affected by dirty data, because the proportion of the #-
publications by Year in dirty data (Table I) is the same as
cleaned data (Table II). 2

Practically, it is too expensive to completely clean a dataset.
Intuitively, compared with cleaning the entire dataset, only
cleaning task (such as a bar chart or a pie chart) relevant data
should be much cheaper [30].

We study a new problem, interactive cleaning for progres-
sive visualization (ICPV), to progressively improve the quality
of visualization by minimizing the cost of interacting with the
user to clean the visualization-aware data.

Challenges. There are four main challenges. (C1) How to
quantify the difference between two visualizations before/after
the data is cleaned? (C2) What is the ideal user- and task-
friendly interface to interact with the user? (C3) How to

1Chengliang Chai is the corresponding author.

VISUALIZE
SELECT
FROM
TRANSFORM
SORT
WHERE
LIMIT

TYPE in {Bar, Pie}
X’, Y’ (X’ in {X, GROUP(X), BIN(X)}, Y’ in {Y, AGG(Y)})
D
X (using an operating in {BIN, GROUP})
X’, Y’ BY {DESC, ASC}
A OP t (A in {X, Y}, OP in {=, <, <=, >=, >})
K

Fig. 2. Visualization Query Language (VQL)

compute the expected benefit of cleaning data errors for a task?
(C4) How to select the questions that maximize the benefit of
asking a set of questions?

Contributions. We develop a system, VISCLEAN, to tackle
the ICPV problem, with the following contributions.
• We describe methods to quantify the difference between

two visualizations (C1), characterize different types of
data errors, and propose novel composite questions to
interact with the users (C2). (Section II)

• We present a general framework for solving the ICPV
problem. (Section III)

• We describe how to detect data errors and generate
possible repairs. (Section IV)

• We propose an estimation-based benefit model to quantify
the visualization quality improvement from the user inter-
action (C3), and an effective question selection algorithm
to select the most beneficial question in each iteration
(C4). (Section V)

• We present a new graph-based GUI for composite ques-
tions that users can directly operate on, for both cleaning
the data and the visualization. (Section VI)

• Extensive experiments on real-world datasets show that
we can effectively turn bad visualization into good ones
with a small number of interactions. (Section VII)

Moreover, we discuss related work in Section VIII and close
this paper by concluding remarks in Section IX.

II. PRELIMINARIES

A. Visualization Queries

We use a SQL-like visualization language [24], [25]. Other
declarative languages (e.g., Vega-Lite [32]) can also be used.

Figure 2 shows our used language, where the keywords are
highlighted, with mandatory ones in blue and optional ones in
green. X ′ (resp. Y ′) is transformed from X (resp. Y):
• X ′ can be just X , grouping values in X (e.g., GROUP

BY(Venue)), or binning values in X (e.g., BIN(Citations)
By Interval 200);

• Y ′ can be either Y or applying an aggregation function
from = {SUM, AVG, COUNT} on Y .

The queries Q1(D) and Q2(D) in Fig. 3 will create a bar
chart (Fig. 1(a)) and a pie chart (Fig. 1(b)), respectively.

B. Quantifying Distances between Visualizations

Let dist(Q(D), Q(Dc)) be the distance between the two
visualizations that use the same query Q over different ver-
sions of the same dataset, D and Dc.

VISUALIZE
SELECT
FROM
GROUP BY

Pie
Year, COUNT(Year)
Table I
Year

VISUALIZE
SELECT
FROM
GROUP BY

Bar
Venue, SUM(Citations)
Table I
Venue

Q1(D)
<latexit sha1_base64="naqWDxsk2fuUO1obpKItHteLPOw=">AAACy3icjVHLTsJAFD3UF+ILcemmEUxgQ1o2uiTRhRsTSOSRACFtGbCxr3SmJogu/QG3+l/GP9C/8M5QEpUYvU3bM+fec2buXDvyXC4M4y2jrayurW9kN3Nb2zu7e/n9QpuHSeywlhN6Ydy1Lc48N2At4QqPdaOYWb7tsY59cybznVsWczcMrsQ0YgPfmgTu2HUsQVS31Bya5fNKaZgvGlVDhb4MzBQU64V+BRSNMP+KPkYI4SCBD4YAgrAHC5yeHkwYiIgbYEZcTMhVeYYH5EibUBWjCovYG/pOaNVL2YDW0pMrtUO7ePTGpNRxTJqQ6mLCcjdd5RPlLNnfvGfKU55tSn879fKJFbgm9i/dovK/OtmLwBinqgeXeooUI7tzUpdE3Yo8uf6lK0EOEXESjygfE3aUcnHPutJw1bu8W0vl31WlZOXaSWsTfMhT0oDNn+NcBu1a1TSqZtMs1muYRxaHOEKZ5nmCOi7QQEvN8QnPeNEuNa7daffzUi2Tag7wLbTHT1bNkc0=</latexit><latexit sha1_base64="o+L4h29ImTV81g3KD1Kret2Fwhs=">AAACy3icjVHLSsNAFD3GV62vqks3wVaom5J0o8uCLtwILdgH1FKSdFqH5kUyEWp16Q+41f8S/0D/wjvjFNQiOiHJmXPPuTP3Xjf2eSos63XBWFxaXlnNreXXNza3tgs7u600yhKPNb3Ij5KO66TM5yFrCi581okT5gSuz9ru+FTG2zcsSXkUXopJzHqBMwr5kHuOIKpTavTt8tlRqV8oWhVLLXMe2BoUoVc9KrzgCgNE8JAhAEMIQdiHg5SeLmxYiInrYUpcQoirOMM98uTNSMVI4RA7pu+Idl3NhrSXOVPl9ugUn96EnCYOyRORLiEsTzNVPFOZJftb7qnKKe82ob+rcwXEClwT+5dvpvyvT9YiMMSJqoFTTbFiZHWezpKprsibm1+qEpQhJk7iAcUTwp5yzvpsKk+qape9dVT8TSklK/ee1mZ4l7ekAds/xzkPWtWKbVXshl2sVfWoc9jHAco0z2PUcI46mmqOj3jCs3FhpMatcfcpNRa0Zw/flvHwAXrskPY=</latexit>

Q1(D)
<latexit sha1_base64="naqWDxsk2fuUO1obpKItHteLPOw=">AAACy3icjVHLTsJAFD3UF+ILcemmEUxgQ1o2uiTRhRsTSOSRACFtGbCxr3SmJogu/QG3+l/GP9C/8M5QEpUYvU3bM+fec2buXDvyXC4M4y2jrayurW9kN3Nb2zu7e/n9QpuHSeywlhN6Ydy1Lc48N2At4QqPdaOYWb7tsY59cybznVsWczcMrsQ0YgPfmgTu2HUsQVS31Bya5fNKaZgvGlVDhb4MzBQU64V+BRSNMP+KPkYI4SCBD4YAgrAHC5yeHkwYiIgbYEZcTMhVeYYH5EibUBWjCovYG/pOaNVL2YDW0pMrtUO7ePTGpNRxTJqQ6mLCcjdd5RPlLNnfvGfKU55tSn879fKJFbgm9i/dovK/OtmLwBinqgeXeooUI7tzUpdE3Yo8uf6lK0EOEXESjygfE3aUcnHPutJw1bu8W0vl31WlZOXaSWsTfMhT0oDNn+NcBu1a1TSqZtMs1muYRxaHOEKZ5nmCOi7QQEvN8QnPeNEuNa7daffzUi2Tag7wLbTHT1bNkc0=</latexit><latexit sha1_base64="o+L4h29ImTV81g3KD1Kret2Fwhs=">AAACy3icjVHLSsNAFD3GV62vqks3wVaom5J0o8uCLtwILdgH1FKSdFqH5kUyEWp16Q+41f8S/0D/wjvjFNQiOiHJmXPPuTP3Xjf2eSos63XBWFxaXlnNreXXNza3tgs7u600yhKPNb3Ij5KO66TM5yFrCi581okT5gSuz9ru+FTG2zcsSXkUXopJzHqBMwr5kHuOIKpTavTt8tlRqV8oWhVLLXMe2BoUoVc9KrzgCgNE8JAhAEMIQdiHg5SeLmxYiInrYUpcQoirOMM98uTNSMVI4RA7pu+Idl3NhrSXOVPl9ugUn96EnCYOyRORLiEsTzNVPFOZJftb7qnKKe82ob+rcwXEClwT+5dvpvyvT9YiMMSJqoFTTbFiZHWezpKprsibm1+qEpQhJk7iAcUTwp5yzvpsKk+qape9dVT8TSklK/ee1mZ4l7ekAds/xzkPWtWKbVXshl2sVfWoc9jHAco0z2PUcI46mmqOj3jCs3FhpMatcfcpNRa0Zw/flvHwAXrskPY=</latexit>

Q2(D)
<latexit sha1_base64="8md82cmeQyWiRHO9vI8KoGtkqUw=">AAACy3icjVHLTsJAFD3UF+ILcemmEUxgQ1o2uiTRhRsTSOSRACFtGXBiX2mnJogu/QG3+l/GP9C/8M5QEpUYvU3bM+fec2buXDt0eSwM4y2jrayurW9kN3Nb2zu7e/n9QjsOkshhLSdwg6hrWzFzuc9agguXdcOIWZ7tso59cybznVsWxTzwr8Q0ZAPPmvh8zB1LENUtNYe18nmlNMwXjaqhQl8GZgqK9UK/AopGkH9FHyMEcJDAA4MPQdiFhZieHkwYCIkbYEZcRIirPMMDcqRNqIpRhUXsDX0ntOqlrE9r6RkrtUO7uPRGpNRxTJqA6iLCcjdd5RPlLNnfvGfKU55tSn879fKIFbgm9i/dovK/OtmLwBinqgdOPYWKkd05qUuibkWeXP/SlSCHkDiJR5SPCDtKubhnXWli1bu8W0vl31WlZOXaSWsTfMhT0oDNn+NcBu1a1TSqZtMs1muYRxaHOEKZ5nmCOi7QQEvN8QnPeNEutVi70+7npVom1RzgW2iPn1kxkc4=</latexit><latexit sha1_base64="N3MkJY5+qij96sP8NxnDBJS4z3M=">AAACy3icjVHLSsNAFD3GV62vqks3wVaom5J0o8uCLtwILdgH1FKSdFqH5sVkItTq0h9wq/8l/oH+hXfGFNQiOiHJmXPPuTP3Xjf2eSIt63XBWFxaXlnNreXXNza3tgs7u60kSoXHml7kR6LjOgnzeciakkufdWLBnMD1Wdsdn6p4+4aJhEfhpZzErBc4o5APuedIojqlRr9aPjsq9QtFq2LpZc4DOwNFZKseFV5whQEieEgRgCGEJOzDQUJPFzYsxMT1MCVOEOI6znCPPHlTUjFSOMSO6TuiXTdjQ9qrnIl2e3SKT68gp4lD8kSkE4TVaaaOpzqzYn/LPdU51d0m9HezXAGxEtfE/uWbKf/rU7VIDHGia+BUU6wZVZ2XZUl1V9TNzS9VScoQE6fwgOKCsKedsz6b2pPo2lVvHR1/00rFqr2XaVO8q1vSgO2f45wHrWrFtip2wy7Wqtmoc9jHAco0z2PUcI46mnqOj3jCs3FhJMatcfcpNRYyzx6+LePhA31QkPc=</latexit>

Q2(D)
<latexit sha1_base64="8md82cmeQyWiRHO9vI8KoGtkqUw=">AAACy3icjVHLTsJAFD3UF+ILcemmEUxgQ1o2uiTRhRsTSOSRACFtGXBiX2mnJogu/QG3+l/GP9C/8M5QEpUYvU3bM+fec2buXDt0eSwM4y2jrayurW9kN3Nb2zu7e/n9QjsOkshhLSdwg6hrWzFzuc9agguXdcOIWZ7tso59cybznVsWxTzwr8Q0ZAPPmvh8zB1LENUtNYe18nmlNMwXjaqhQl8GZgqK9UK/AopGkH9FHyMEcJDAA4MPQdiFhZieHkwYCIkbYEZcRIirPMMDcqRNqIpRhUXsDX0ntOqlrE9r6RkrtUO7uPRGpNRxTJqA6iLCcjdd5RPlLNnfvGfKU55tSn879fKIFbgm9i/dovK/OtmLwBinqgdOPYWKkd05qUuibkWeXP/SlSCHkDiJR5SPCDtKubhnXWli1bu8W0vl31WlZOXaSWsTfMhT0oDNn+NcBu1a1TSqZtMs1muYRxaHOEKZ5nmCOi7QQEvN8QnPeNEutVi70+7npVom1RzgW2iPn1kxkc4=</latexit><latexit sha1_base64="N3MkJY5+qij96sP8NxnDBJS4z3M=">AAACy3icjVHLSsNAFD3GV62vqks3wVaom5J0o8uCLtwILdgH1FKSdFqH5sVkItTq0h9wq/8l/oH+hXfGFNQiOiHJmXPPuTP3Xjf2eSIt63XBWFxaXlnNreXXNza3tgs7u60kSoXHml7kR6LjOgnzeciakkufdWLBnMD1Wdsdn6p4+4aJhEfhpZzErBc4o5APuedIojqlRr9aPjsq9QtFq2LpZc4DOwNFZKseFV5whQEieEgRgCGEJOzDQUJPFzYsxMT1MCVOEOI6znCPPHlTUjFSOMSO6TuiXTdjQ9qrnIl2e3SKT68gp4lD8kSkE4TVaaaOpzqzYn/LPdU51d0m9HezXAGxEtfE/uWbKf/rU7VIDHGia+BUU6wZVZ2XZUl1V9TNzS9VScoQE6fwgOKCsKedsz6b2pPo2lVvHR1/00rFqr2XaVO8q1vSgO2f45wHrWrFtip2wy7Wqtmoc9jHAco0z2PUcI46mnqOj3jCs3FhJMatcfcpNRYyzx6+LePhA31QkPc=</latexit>

Fig. 3. Sample Visualization Queries

Although one may use any distance function, such as Eu-
clidean, Kullback-Leibler, Jensen-Shannon, and Earth Mover
distance (EMD). In this work, we take EMD, which is known
to well measure the distance between two visualizations [36].

Given two visualizations Q(D) and Q(Dc), let d̄ =
(d1, d2, · · · , dm) and d̄′ = (d′1, d

′
2, · · · , d′n) denote the data

of Q(D) and Q(Dc) respectively, where di = (di(x), di(y))
and d′i = (d′i(x), d′i(y)). Let δij = |di(y)− d′j(y)| denote the
distance between di(y) and d′j(y). Note that, we normalize
each di(y) (d′i(y)) into a probability distribution such that the∑
di(y) (

∑
d′i(y)) is equal to 1.‘’ EMD aims to find a flow

F = [fij] that minimizes:

min

m∑
i=1

n∑
j=1

fijδij (1)

subject to the constraints:

fij ≥ 0,

n∑
j=1

fij ≤ di(y),
m∑
i=1

fij ≤ d′j(y) (2)

m∑
i=1

n∑
j=1

fij ≤ min
(m∑
i=1

di(y),

n∑
i=1

d′i(y)
)

(3)

Then, EMD is computed as:

EMD(Q(D), Q(Dc)) =

∑m
i=1

∑n
j=1 fijδij∑m

i=1

∑n
j=1 fij

(4)

C. Data Errors Meet Visualizations

Data Errors. We consider the following types of errors:
(i) tuple-level duplicates such as t7 and t8 in Table I, (ii)
attribute-level duplicates (or synonyms), such as “VLDB”, and
“Very Large Data Bases”, (iii) missing values such as
t7[Citations], and (iv) outliers such as t2[Citations].

Note that other types of errors can also be incorporated, if
the tools for detecting and repairing them are available.

Visualizations with Data Errors. Consider the followings.

(i) Tuple-level duplicates will affect a visualization because
(1) the tuples should be grouped together in X ′ if they refer
to the same tuples, and (2) the aggregated value in Y ′ should
be generated based on the same entity, and the COUNT /SUM
functions on Y will be significantly affected. Consider Q1(D)
in Fig. 3. The Citations of t6 is counted twice, which leads
to an incorrect visualization in Fig. 1(a).

(ii) Attribute-level duplicates will affect X ′ and Y ′. (1) The
values in X should be grouped based on the same attribute-
level entity. (2) If X ′ is generated from X by some selection
operations, some tuples may be missing in X ′ because they do
not exactly match the selection conditions due to the synonym.
(3) The aggregated value in Y ′ will be incorrect due to errors

Query Type Tuple Attr. Missing Outliers
1 X ′=X(Numeric), Y ′ = Y Yes No Yes Yes
2 X ′=X(Category), Y ′ = Y Yes Yes Yes Yes
3 X ′=BIN(X), Y ′=AGG(Y) Yes No Yes Yes
4 X ′=GROUP(X), Y ′=AGG(Y) Yes Yes Yes Yes

TABLE III
RELATIONSHIP BETWEEN ERRORS AND VISUALIZATIONS

in X ′. Fig. 1(a) is an incorrect visualization that is partially
caused by attribute-level duplicates.

(iii) Missing values will affect X ′ and Y ′. (1) X ′ will be
incorrectly grouped/binned/selected due to missing values. (2)
Y ′ will be incorrectly aggregated. For example, t7[Citations] is
a missing value. It affects the aggregation result of the “VLDB”
group in Fig. 1(a).

(iv) Outliers will affect X ′ and Y ′. (1) If X ′ is selected based
on selection operations or binning on X , there may be some
errors due to outliers. (2) Y ′ will be incorrectly aggregated
due to outliers such as t2[Citations]. It greatly affects the
aggregation result of “SIGMOD Conf.” group in Fig. 1(a).

Table III summarizes the relationships between different
types of errors and visualizations. We assume that Y -axis is
always a numerical column. For example, the Q1(D) in Fig. 3
belongs to the fourth visualization query type in Table III. The
X of Q1(D) is Venue, and the Y of Q1(D) is Citations. The
four types of data errors will affect the quality of visualization
Q1(D), as discussed above.

D. Single Questions vs. Composite Questions

Single Questions. Let’s first discuss single questions.

(i) Tuple-level duplicates: “Are t1 and t2 duplicates”, where
tuples t1 and t2 are possible duplicates.

(ii) Attribute-level duplicates: Are value v1 (e.g., ICDE) and
v2 (e.g., ICDE Conf.) the same? If so, which value should
be used?

(iii) Missing values: Which possible repair a missing value
(attribute a of tuple t) should take?

(iv) Outliers: Is value v in tuple t an outlier? If so, which
(possible) repair should it take?

We use T -, A-, M -, and O-question to denote a tuple-
level duplicates question, attribute-level duplicates question, a
missing value question, and an outlier question, respectively.

Composite Questions. In practice, it is hard for a user to
precisely answer a data cleaning question without enough con-
text. Consequently, interactive data cleaning systems typically
provide more information to the user, beyond only one data
error [10]. Moreover, it has also observed that different errors
may impact each other [13]. Hence, we propose to use one
graph model to organize different types of errors.

Definition 2.1: [Errors and Repairs Graph (ERG)] All errors
and possible repairs can be modeled as an undirected weighted
graph G(V, E), where:

1) each vertex vi ∈ V is a tuple,
2) there is an edge (vi, vj) ∈ E , if vi and vj are possible

tuple- or attribute-level duplicates.

ACM SIGMOD

SIGMOD Conf. SIGMOD

SIGMOD’13

SIGMOD’13

Very Large Data Bases

VLDB
ICDE 2013

ICDE IEEE ICDE Conf. 2015

(0.
7,

0.7
) (0.6, 0.6)

(0.8, 0.8)

(0.7, 0.7)

t1

t2 t3

t8

t9 t10

t4t5

t6

t7
(0.6, 0.6)

(0.5, 0.5)
(0.1, 0

.5)

Outliers Missing Values Possible Matching Dataset: Table I Attribute: Venue

Fig. 4. A Sample ERG

(0.8, 0.8)

t1

t3t2

(0
.7

, 0
.7

) (0
.6

, 0
.6

)

SIGMODSIGMOD Conf.

ACM SIGMOD

t12

t3

(0
.7

, 0
.7

)

SIGMOD

ACM SIGMOD

(b) Confirm Edge (t1,t2)(a) A CQG

t123

SIGMOD

(c) Confirm Edge (t12,t3)

Fig. 5. Sample Operations on a CQG

3) each vertex has a label, where red means that the tuple
has an outlier (i.e., an O-question), and hollow indicates
a missing value (i.e., an M -question), and

4) each edge (vi, vj) has a weight (ptij , p
a
ij), where ptij is the

tuple-level entity matching probability (i.e., a T -question)
and paij is the attribute-level matching probability (i.e., an
A-question). 2

Note that, an A-question is only for categorical values, i.e.,
for the X-axis of a visualization. Hence, typically, there has
at most one A-question for an edge.

Example 3: [ERG] Figure 4 is a sample ERG for Fig. 1(a). It
has 10 vertices, one contains an O-question (t2), and another
has an M -question (t7). Note that it just shows edges that are
weighted (either ptij or paij) between 0.5 and 0.8. It has 7 edges
to denote 7 T -questions and 7 A-questions. Particularly, the
edge (t4, t9) denotes that entity t4 and t9 are tending to match
with probability 0.1, while the attribute values (i.e., Venue) for
X on t4 and t9 match with probability 0.5. 2

Instead of using single questions on an ERG to interact with
the user, we propose to use composite questions to provide
more context for the user, which is also considered in [5].

Definition 2.2: [CQG] A composite question graph is a
connected induced subgraph of an ERG. 2

User Permissible Operations on a CQG. For each edge, the
user can confirm (resp. split) an edge to denote its associated
two vertices are (resp. not) the same tuple- or attribute-level
entity. For each vertex, the user can either approve or reject
the outliers and missing values repair candidates.

Example 4: [CQG] Figure 5(a), a subgraph of Fig. 4, is a
CQG. The user can directly operate on Fig. 5(a) to provide
label data. For example, the user confirms the edge (t1, t2) and
approves the outlier repair value on t2. It will merge vertices
t1 and t2 (Fig. 5(b)), which denotes that t1 and t2 are the
same tuple- and attribute-level entity. The user further confirms
the edge (t12, t3), similarly, it will produce Fig. 5(c). So far,
it indicates the vertices (i.e., tuples) t1, t2, and t3 are the

same entity, standardizes the variant values of “SIGMOD”, and
approves the outlier repairing value on t2. These label data will
enhance the quality of data cleaning models and thus improve
the visualization quality. 2

E. Goal

Given a bad visualization Q(D) over the dirty dataset D,
and a user budget B for the number of iterations that a
user can be involved, the problem of interactive cleaning for
progressive visualization (ICPV) is to interact with the user to
repair D to get Dc up to B interactions, so as to maximize
dist(Q(D), Q(Dc)).

Remark. The problem of ICPV can be generalized to other
types of visualizations or other task-driven data cleaning
problems, if a distance function can be defined to quantify
the impact on a visualization (or task) before/after cleaning
a dataset. Besides the contribution of proposing composite
questions versus traditional single questions, we use data
visualization because it is easy for readers to understand the
difference perceptually.

III. FRAMEWORK OVERVIEW

The overview of VISCLEAN for solving the ICPV problem
is given in Fig. 6, with the following steps.

(1) Visualization Specification. The user needs to specify a
visualization query on a specific dataset.

(2) Initialization. VISCLEAN first needs to run off-the-shelf
data cleaning tools to detect different types of errors and
generate possible repairs (Section IV).

(3) ERG Construction. It then builds an ERG to organize the
detected data errors and their possible repairs.

(4) CQG Selection. It first measures the benefit of asking
a CQG by an estimation-based benefit model, where the
benefit is associated with the distance between visualization
before/after cleaning the data. The larger the distance is, the
larger the benefit is (Section V-A). It then selects the “most
beneficial” CQG from the ERG based on the benefit model to
interact with the user in each iteration (Section V-B).

(5) User Interaction on Graph. The user interacts with our
GUI to provide the answer to the CQG (Section VI).

(6) Repair Errors and Update Visualization. After getting
feedback from the user, it will repair data errors and refresh
the data visualization (7). Afterwards, the user feedback might
be used by each used data cleaning model to find new
errors/possible repairs (2). The process iterates until the budget
is used up.

IV. DATA ERRORS AND POSSIBLE REPAIRS

In this section, we will describe how to detect data errors
and generate possible repairs to clean visualization.

QT : Questions for Tuple-Level Duplicates. We utilize entity
matching (EM) techniques to detect and remove the duplicates.
We first train an EM model (we use random forests [19]). For
each tuple pair (e.g., t1 and t3), the EM model will provide

Progressive Visualization

Interactive Cleaning

Dirty Table DD

Errors & Repairs Candidates

Attr.-level Dup.

Missing Values

Outliers

Tuple-level Dup. {t1=t2?, t1=t3? …}

{SIGMOD = SIGMOD’13 ? …}

{t7[Citations] = 55.0? …}

{t2[Citations] = 174.0? …}

In
teractio

n

(3) (4)

(5)

Train (2)

User FeedbackData Cleaning Models (6)

CQG Selection

B
en

e
fi
t
M
o
d
e
l

ACM SIGMOD

SIGMODSIGMOD Conf.

(0
.6,0

.6)

(0.8,0.8)

(0
.7
,0
.7
)

t1

t2 t3

ERG Construction

t1

t3t2

t5

t4

t6

t7t8

t9 t10

Query Q

(1)

(Dirty) Visualization Q(D) (Cleaned) Visualization Q(Dc)

Update

(7)

Fig. 6. Solution Overview

a matching probability. Then we use the active learning
techniques to generate a set of tuple pairs QT , e.g., those
uncertain pairs with probability close to 0.5, and take the pairs
in QT as T -questions. A T -question for Table I is “(t1, t3):
whether t1 and t3 are the same entity or not”.

QA: Questions for Attribute-Level Duplicates. If X is a
categorical column (e.g., Venue), we need to detect whether
there exist attribute-level duplicates in this column, as shown
in Tabe III. We have two strategies to detect attribute-level
duplicates and generate a set of A-questions QA.

Strategy 1. We can use T -questions to generate a set of A-
questions. We first group those possible matching tuple pairs
into the same cluster. The attribute of each tuple in the
same cluster should refer to the same entity. For example,
t7 and t8 will be grouped into the same cluster, and thus
t7[Venue] and t8[Venue] should be the same. Therefore, we
can generate an A-question “VLDB” ↔ “Very Large Data

bases”. We implement this strategy based on the existing
techniques, i.e., GoldenRecordCreation [11]. For example,
given a cluster C1:{t1, t2, t3} and an attribute Venue as in-
puts, GoldenRecordCreation will produce three transformation
candidates for C1 on attribute Venue, i.e., “ACM SIGMOD”
↔ “SIGMOD Conf.”, “ACM SIGMOD” ↔ “SIGMOD”, and
“SIGMOD Conf.” ↔ “SIGMOD”. Therefore, we can standard-
ize the synonyms in each cluster based on these candidate
transformations.

However, if some attribute-level duplicates could not
be grouped into the same cluster, it’s hard for Golden-
RecordCreation to generate all transformation candidates.
For example, consider cluster C1:{t1, t2, t3} and C2:{t5, t6},
it can not generate some candidate transformations, e.g.,
“SIGMOD’13”↔“SIGMOD” across clusters C1 and C2.

Strategy 2. We propose another strategy to tackle the above
problem. Given two clusters Ci and Cj , the basic idea
is that we run a String Similarity Join algorithm [16] on
the target column X (e.g.,Venue) of these two clusters to
find a set of similarity strings {(ci, cj)|ci ∈ Ci, cj ∈
Cj , similarity(ci, cj) > λ}. For example, given two clusters
{t1, t2, t3} and {t5, t6}, it could produce our preferred can-

Algorithm 1: A-QUESTIONSGENERATION

Input: Clusters: C :{C1, ..., Cn}, Attribute: a, Threshold: λ;
Output: A set of A-questions: QA;

1 QA = GoldenRecordCreation(C, a);
2 for each Ci in C do
3 for each Cj in C do
4 if Ci 6= Cj then
5 QA = StringSimilarityJoin(Ci, Cj , a, λ);
6 QA.append(QA); // add QA into QA

7 return QA;

didate transformation: “SIGMOD’13” ↔ “SIGMOD”.
Hence, we can combine the above two strategies to generate

a set of A-questions QA. Algorithm 1 shows the pseudo-code.

QM : Questions for Missing Values Imputation. Given a
tuple with a missing value on column Y (e.g., Citations), we
compute k (e.g., k = 5) nearest neighbors of the tuple. In
order to measure the distance between each pair of tuples, we
concatenate all attributes in each tuple to form a string and
then utilize the string similarity score (e.g., Jaccard) as the
distance. Then, we use the average of values on column Y
of these k neighbors as the suggested imputation value. Thus,
for all tuples that contain missing values, we can get a set of
M -questions QM .

QO: Questions for Outliers Repairing. We use kNN [31] to
detect outliers on column Y (e.g., Citations), which computes
an outlier score for each value v. The score is defined as the
k−th smallest absolute difference between all other values
and v. Then we sort all the values based on the scores in
descending order. Next, we select those values with the largest
scores as the O-questions QO.

Thus, we could generate a set of data repairing candidates in
each iteration. Formally, let Q = QT ∪QA∪QM ∪QO denote
the repairing candidate set in each iteration. These questions
will be organized as an ERG.

V. SELECTING COMPOSITE QUESTIONS

A. Estimation-based Benefit Model

We first discuss how to measure the benefit on an edge
of a CQG. The user can confirm/split an edge to provide
new training data to enhance the quality of data cleaning
models and thus improve the quality of visualization. More
specifically, for each edge (i.e., each repairing candidate
q ∈ Q), we enumerate all possible user operations in this edge
(i.e., confirm/split operation). For each type of user operation,
it provides useful feedback to repair data errors and retrain
data cleaning models (Step-(6) in Fig. 6). Then we can derive
a new version of dataset Dc from D. At last, we can update
the visualization on Dc (Step-(7) in Fig. 6). Thus, we can
measure the visualization distance dist before/after cleaning
the data using EMD function. The larger the distance is, the
larger the estimated benefit is.

Next, we discuss how to quantify the benefit of a CQG. We
assume that the user operation on each edge is independent.

Therefore, we use the sum of the total benefit of each edge to
estimate the benefit of a CQG.

Definition 5.1: [Estimation-based Benefit Model] Consider a
CQG G(V,E). For each edge (vi, vj) in E, let PY be the
probability of confirm edge and PN be the probability of split
edge. For each type of operation, it will enhance data cleaning
models and thus derive a new visualization. Hence, we use the
dist to measure the visualization distance. Thus, the expected
benefit of asking a CQG question could be computed as below:

B(G) =

|E|∑
i=1

(PY
i dist

Y
i + PN

i distNi) (5)
2

Next, we discuss how to compute the estimation-based
benefit for each type of repairing question.

(1) Questions for Tuple-level Duplicates. Given a T -question
in QT to be labeled (i.e., an edge in the CQG), it will be
answered as a matching (i.e., confirm edge) or non-matching
pair (i.e., split edge) by the user. We use the current EM
model to predict matching probability PY for tuple pairs.
The probability of a matching tuple pair is PY and non-
matching 1 − PY . (i) If the user confirms a T -question, the
benefit is twofold. On the one hand, the EM Model can benefit
from the newly labeled tuple pairs. On the other hand, these
labeled tuple pairs can be used to standardize the attribute-
level duplicates. For example, suppose t7 and t8 refer to the
same entity, and thus their attribute-level entity t7[Venue] and
t8[Venue] also refer to the same entity. Therefore, we can
compute a visualization distance distY before/after updating
the EM model. (ii) If the user label a T -question as a non-
matching pair, the label only benefits the EM model. Similarly,
we can compute a visualization distance distN . Finally, the
estimated benefit of a T -question is computed as:

BT = PY distY + (1−PY)distN (6)

(2) Questions for Attribute-level Duplicates. For each A-
question in QA, the user may approve or reject it. We use
the similarity score from Algorithm 1 to predict the prob-
ability PY that the user approves an A-question. (I) If the
user approves an A-question, its benefit is twofold: (i) the
benefit from standardizing attribute-level duplicates, and (ii)
the benefit from enhancing the EM model for better removing
tuple-level duplicates. We first update the entire dataset based
on the answer of the A-question and then apply the answer of
the A-question on the training set of the EM model. Then,
we retrain the EM model and derive a new visualization.
Next, we compute the visualization distance distY . (II) If the
user rejects an A-question, it will not provide any benefit for
improving the quality of visualization. Therefore, the overall
estimated benefit for an A-question is BA = PY distY .

(3) Questions for Missing Values Imputation. The user has
two possible ways to answer an M -question in QM . On the
one hand, the user can approve our suggested missing value
imputation result. On the other hand, the user can provide
their preferred missing value imputation result. For the above

two cases, we use the suggested value to impute missing
values and derive a new visualization. Then we compute the
visualization distance before/after imputing missing values,
denoted by distY . Therefore, the estimated benefit for an M -
question is BM = distY .

(4) Questions for Outliers Repairing. Similar to missing
value imputation, we use our suggested outlier repairing value
to repair the outlier and compute the visualization distance as
the estimated benefit for an O-question: BO = distY .

Example 5: [Estimated Benefit of a CQG] Figure 5(a) is
a CQG. We iterate each edge of the CQG to compute its
benefit. First, we access the edge (t1, t2). We first compute
BT and then BA. Suppose the BT = 0.1 and BA = 0.2. Then
we compute BO because vertex t2 contains an outlier repair
candidate. Suppose the result of BO = 0.2. Thus, the benefit
of edge (t1, t2), b12, can be computed as 0.1+0.2+0.2 = 0.5.
Similarly, we can compute b13 and b23 for edge (t1, t3) and
(t2, t3), respectively. Finally, we can sum b12, b13, and b23 to
estimate the benefit of this CQG. 2

B. CQG Selection Algorithm

After we know how to estimate the benefit of CQG, we
now aim to select the “most beneficial” CQG from the ERG,
i.e., the “most beneficial” connected subgraph of the ERG. We
describe the CQG selection problem below.

Definition 5.2: [Optimal CQG Selection] Given an ERG
G(V, E , b) and an integer k (2 < k < |V|), the optimal CQG
selection problem aims to find a connected subgraph G(V,E)
of G with k vertices (k-subgraph) such that the total edge
weight (i.e., benefit) is maximum. 2

For example, suppose that we want to select the optimal
CQG with 4 vertices (k = 4) from the ERG (e.g., Fig. 7(b)).
The straightforward approach is enumerating all connected
subgraphs with 4 vertices, compute total weight (i.e., total
benefit) of each subgraph, and then select the subgraph with
maximum total weight as the optimal CQG (i.e., Fig. 7(c)).

Unfortunately, the Optimal CQG Selection problem is NP-
hard when k = O(V) because it can be formulated as the
Heaviest k-subgraph problem [21], which is an NP-hard prob-
lem by a direct reduction from the Clique problem. When k is
a constant, the time complexity of the Optimal CQG Selection
problem is O(

(|V |
k

)
· k2) because we need to enumerate all k-

subgraphs and compute the benefit for each k-subgraph.
Letsios et.al. [21] developed a Branch and Bound (B&B)

algorithm for Heaviest k-subgraph problem. However, it is
much inefficient when k > 10, whose time complexity is
O(
(|E|
k−1
)
· klog(c)), where c is the core value of the graph.

As it is prohibitively expensive to find the optimal CQG
from the ERG, we devise a greedy algorithm GSS to select
the CQG efficiently and effectively. The basic idea is that we
select subgraphs with large benefits as candidates greedily and
incrementally. Then we choose the one of size k with the
largest benefit as G(V,E). We first introduce some important
variables in our algorithm. C is a collection of vertices in V .

Algorithm 2: GSS: GREEDYSUBGRAPHSELECTION

Input: An ERG G(V, E ,w), k (2 < k < |V|);
Output: Subgraph G(V,E);

1 Bmax ← 0; Collection of vertex set C ← null;
2 for each v in V do m[v]← null ;
3 G(V, E , b)← EstimatedBenefit(G(V, E ,w));
4 Sort E by b in descending order;
5 for each edge (v, v′) in E do
6 if m[v] = m[v′] = null then
7 Add {v, v′} to C; // Case 1
8 m[v]← {v, v′}; m[v′]← {v, v′};
9 continue ;

10 if m[v] = null then
11 vf ← v; vt ← v′; // Case 2
12 else
13 vf ← v′; vt ← v; // Case 3

14 Add vf into m[vt];
15 m[vf]← m[vt];
16 if |m[vt]| = k then
17 Get the G′(V ′, E′) induced by vertices in m[vt];
18 B ← sum of the benefit of all edges in G′(V ′, E′);
19 if B > Bmax then
20 G(V,E)← G′(V ′, E′);
21 Bmax ← B;

22 for each vertex u in G′(V ′, E′) do m[u]← null;

23 return G(V,E);

Each element in C denotes a set of vertices with the size equal
to or smaller than k. m[v] ∈ C denotes the set that the vertex
v lies in. For example, collection C in iteration 3 of Fig. 7(e)
has two elements, i.e., {B, C, E} and {D, F}. We can access
the vertex set {D, F} by either m[D] or m[F].

Algorithm 2 shows the overview of our algorithm GSS. C
and ∀v ∈ V are initialized as null at the beginning. We first
estimate the benefit b of each edge using our Estimation-based
Benefit Model (Line 3). Since we want to incorporate edges
with large benefits into G(V,E), we sort edges in E based on
the benefit b in descending order (Line 4) and iterate on each
of them (Line 5).

Given an edge (v, v′), we add its two endpoints into a vertex
set in C (Line 6-14), so that the subgraph induced by the
vertices in the set will have a large benefit. Now the problem
is which vertex should be added to which vertex set. There
are three cases. The first case is that both vertex v and v′ do
not appear in any vertex set in C, we add {v, v′} as a new
vertex set to C and update m (Line 6-9). In the second case
and third case, if m[v] = null and m[v′] 6= null, we add
v into m[v′]. Otherwise, we add v′ into m[v] (Line 10-14).
Please see Example 6 for details.

Then, we use m[vt] to denote the vertex set where v or
v′ is added. Next, we check whether the size of m[vt] is
equal to k. If so, we can induce a new subgraph G′(V ′, E′)
by vertices in m[vt] and compute its benefit B (Line 16-22).
After repeating |E| times, we can output the “most beneficial”
subgraph G(V,E) as CQG.

Example 6: [Example of CQG Selection] Figure 7(a) is an
ERG G(V, E , w). We first compute each edge’s benefit based

(a) ERG with Weight G(V, E , w)
<latexit sha1_base64="CJ6lgnN/5FcafCgYhbxrdwr+Hiw=">AAAC83icjVLLTttAFD2YRyG8Al2w6MYiiQQSimw2sIxUIViC1AQkiNB4GMCKY1t+FEUIqeIb2LFDbPmBbtt/QP2D9ifanpk4EhAhGMu+d86959y5d+zFgZ9mjvNrxBodG5/4MDlVmp6ZnZsvLyy20ihPpGrKKIiSA0+kKvBD1cz8LFAHcaJE1wvUvtf5rOP7X1WS+lH4JevFqt0VZ6F/6kuREYrKS6jiCF0IZDiHpA1wiW2soIU12NjClbEXWEX177/jcsWpO2bZw45bOJVGrXP9DcBuVH6k/AkiSucsoxCykGQRgZTPIVw4iIm1WVYgoeebuGLhErk5sxQzBNEOv2fcHRZoyL3WTA1bskrANyHTRo2ciHkJfV3NNvHcKGv0Ne1Lo6nP1qP1Cq3BgNI3eYPM9/J0LxlOsWl68NlTbBDdnSxUcjMVfXL7SVcZFWJi2j9hPKEvDXMwZ9twUtO7nq0w8d8mU6N6L4vcHH/0KXnB7svrHHZa63XXqbt7bqWxhf6axCcs87dxsYEGdrCLJrVv8B0/8NPKrVvrzrrvp1ojBecjni3r4T/b35t4</latexit><latexit sha1_base64="BgAeyerKPxX/tjaUo0tbwpTY4ZI=">AAAC83icjVLLSsRAEKyN7/eqBw9egqugIEviRY+CiB4V3F1BRSbjqMFsEvJQZPEvvHkTr/6AV/0H8Q/0J9SaMQs+EJ2QTE91V/V0d7w48NPMcZ5KVkdnV3dPb1//wODQ8Eh5dKyeRnkiVU1GQZRseyJVgR+qWuZngdqOEyWaXqAa3smK9jdOVZL6UbiVncdqrymOQv/QlyIjFJUnMI1dNCGQ4RiSe4AW1jCLOuZhYxUXZj/DHKZf3/bLFafqmGX/NNzCqKBYG1H5kfIHiCidM41CyESSSQRSPjtw4SAmtse0Agkt3/gVE/eTmzNKMUIQPeH3iKedAg151pqpYUtmCfgmZNqYISdiXEJbZ7ONPzfKGv1Nu2U09d3OuXuFVrtB6Z+8duR/ebqWDIdYMjX4rCk2iK5OFiq56Yq+uf2pqowKMTFtH9Cf0JaG2e6zbTipqV33Vhj/s4nUqD7LIjbHi74lB+x+H+dPo75QdZ2qu+lWlleLUfdiElP8bVwsYhnr2ECN2pe4wz0erNy6sq6tm49Qq1RwxvFlWbfv1jSZpg==</latexit>

G(V, E , w)
<latexit sha1_base64="CJ6lgnN/5FcafCgYhbxrdwr+Hiw=">AAAC83icjVLLTttAFD2YRyG8Al2w6MYiiQQSimw2sIxUIViC1AQkiNB4GMCKY1t+FEUIqeIb2LFDbPmBbtt/QP2D9ifanpk4EhAhGMu+d86959y5d+zFgZ9mjvNrxBodG5/4MDlVmp6ZnZsvLyy20ihPpGrKKIiSA0+kKvBD1cz8LFAHcaJE1wvUvtf5rOP7X1WS+lH4JevFqt0VZ6F/6kuREYrKS6jiCF0IZDiHpA1wiW2soIU12NjClbEXWEX177/jcsWpO2bZw45bOJVGrXP9DcBuVH6k/AkiSucsoxCykGQRgZTPIVw4iIm1WVYgoeebuGLhErk5sxQzBNEOv2fcHRZoyL3WTA1bskrANyHTRo2ciHkJfV3NNvHcKGv0Ne1Lo6nP1qP1Cq3BgNI3eYPM9/J0LxlOsWl68NlTbBDdnSxUcjMVfXL7SVcZFWJi2j9hPKEvDXMwZ9twUtO7nq0w8d8mU6N6L4vcHH/0KXnB7svrHHZa63XXqbt7bqWxhf6axCcs87dxsYEGdrCLJrVv8B0/8NPKrVvrzrrvp1ojBecjni3r4T/b35t4</latexit><latexit sha1_base64="BgAeyerKPxX/tjaUo0tbwpTY4ZI=">AAAC83icjVLLSsRAEKyN7/eqBw9egqugIEviRY+CiB4V3F1BRSbjqMFsEvJQZPEvvHkTr/6AV/0H8Q/0J9SaMQs+EJ2QTE91V/V0d7w48NPMcZ5KVkdnV3dPb1//wODQ8Eh5dKyeRnkiVU1GQZRseyJVgR+qWuZngdqOEyWaXqAa3smK9jdOVZL6UbiVncdqrymOQv/QlyIjFJUnMI1dNCGQ4RiSe4AW1jCLOuZhYxUXZj/DHKZf3/bLFafqmGX/NNzCqKBYG1H5kfIHiCidM41CyESSSQRSPjtw4SAmtse0Agkt3/gVE/eTmzNKMUIQPeH3iKedAg151pqpYUtmCfgmZNqYISdiXEJbZ7ONPzfKGv1Nu2U09d3OuXuFVrtB6Z+8duR/ebqWDIdYMjX4rCk2iK5OFiq56Yq+uf2pqowKMTFtH9Cf0JaG2e6zbTipqV33Vhj/s4nUqD7LIjbHi74lB+x+H+dPo75QdZ2qu+lWlleLUfdiElP8bVwsYhnr2ECN2pe4wz0erNy6sq6tm49Qq1RwxvFlWbfv1jSZpg==</latexit>

(0
.9

,0
.9

)

(0
.6

. 0
.6

)

(0.2,0.2)

(0.5,0.5)

(0.5, 0.5)

(0.
6,0

.6)

(0.2,0.2)

(0.6,0.6)

(0.5,0.5)

(0.4,0.4)

C

F A

ED B

H

G

I

(0.4,0.4)

J
(0.6,0.6)

(0.4,0.4)

(0.
1,0

.1)

(b) ERG with Benefit G(V, E , b)
<latexit sha1_base64="t053yoTYUOZ6lbRC9ICM3QrxJ+Y=">AAAC23icjVHLSsNAFD2N73dVcOMmWIUKpSRudFmQoksFW4VaZDKdtqF5kUyEUgXRnbj1B9zq/4h/oH/hnTGCWkQnJDlz7jln5s44kecm0rJecsbI6Nj4xOTU9Mzs3PxCfnGpnoRpzEWNh14YnzgsEZ4biJp0pSdOolgw3/HEsdPbVfXjcxEnbhgcyX4kmj7rBG7b5UwSdZZfWT/1mexy5g32ivWSWb0smc7m+lm+YJUtPcxhYGegUNnoXV8BOAjzzzhFCyE4UvgQCCAJe2BI6GnAhoWIuCYGxMWEXF0XuMQ0eVNSCVIwYnv07dCskbEBzVVmot2cVvHojclpYoM8Ieliwmo1U9dTnazY37IHOlPtrU9/J8vyiZXoEvuX71P5X5/qRaKNHd2DSz1FmlHd8Swl1aeidm5+6UpSQkScwi2qx4S5dn6es6k9ie5dnS3T9VetVKya80yb4k3tki7Y/nmdw6C+Vbatsn1oFypVfIxJrGINRbrPbVSwjwPUKPsCD3jEk9E0boxb4+5DauQyzzK+DeP+HRMcmH0=</latexit><latexit sha1_base64="t75yAz2iXe1iSn+spfQ3WoVe2JE=">AAAC23icjVHLSsNAFD2N7/qqCm7cBFuhQimJG10KIrqsYB9gS5lMRxuaF8lEKNWVO3HrD7jV/xH/QP/CO2MKPhCdkOTMufecmXuvE3luIi3rJWdMTE5Nz8zO5ecXFpeWCyurjSRMYy7qPPTCuOWwRHhuIOrSlZ5oRbFgvuOJpjM4UPHmpYgTNwxO5TASHZ9dBO65y5kkqltYL7V9JvuceaOjcqNiHl5XTGe71C0Uraqll/kT2BkoIlu1sPCMNnoIwZHCh0AASdgDQ0LPGWxYiIjrYERcTMjVcYFr5EmbUpagDEbsgL4XtDvL2ID2yjPRak6nePTGpDSxRZqQ8mLC6jRTx1PtrNjfvEfaU91tSH8n8/KJlegT+5dunPlfnapF4hx7ugaXaoo0o6rjmUuqu6Jubn6qSpJDRJzCPYrHhLlWjvtsak2ia1e9ZTr+qjMVq/Y8y03xpm5JA7a/j/MnaOxUbatqn9jF/cNs1LPYwCbKNM9d7OMYNdTJ+woPeMST0TFujFvj7iPVyGWaNXxZxv07DXGWqw==</latexit>

G(V, E , b)
<latexit sha1_base64="t053yoTYUOZ6lbRC9ICM3QrxJ+Y=">AAAC23icjVHLSsNAFD2N73dVcOMmWIUKpSRudFmQoksFW4VaZDKdtqF5kUyEUgXRnbj1B9zq/4h/oH/hnTGCWkQnJDlz7jln5s44kecm0rJecsbI6Nj4xOTU9Mzs3PxCfnGpnoRpzEWNh14YnzgsEZ4biJp0pSdOolgw3/HEsdPbVfXjcxEnbhgcyX4kmj7rBG7b5UwSdZZfWT/1mexy5g32ivWSWb0smc7m+lm+YJUtPcxhYGegUNnoXV8BOAjzzzhFCyE4UvgQCCAJe2BI6GnAhoWIuCYGxMWEXF0XuMQ0eVNSCVIwYnv07dCskbEBzVVmot2cVvHojclpYoM8Ieliwmo1U9dTnazY37IHOlPtrU9/J8vyiZXoEvuX71P5X5/qRaKNHd2DSz1FmlHd8Swl1aeidm5+6UpSQkScwi2qx4S5dn6es6k9ie5dnS3T9VetVKya80yb4k3tki7Y/nmdw6C+Vbatsn1oFypVfIxJrGINRbrPbVSwjwPUKPsCD3jEk9E0boxb4+5DauQyzzK+DeP+HRMcmH0=</latexit><latexit sha1_base64="t75yAz2iXe1iSn+spfQ3WoVe2JE=">AAAC23icjVHLSsNAFD2N7/qqCm7cBFuhQimJG10KIrqsYB9gS5lMRxuaF8lEKNWVO3HrD7jV/xH/QP/CO2MKPhCdkOTMufecmXuvE3luIi3rJWdMTE5Nz8zO5ecXFpeWCyurjSRMYy7qPPTCuOWwRHhuIOrSlZ5oRbFgvuOJpjM4UPHmpYgTNwxO5TASHZ9dBO65y5kkqltYL7V9JvuceaOjcqNiHl5XTGe71C0Uraqll/kT2BkoIlu1sPCMNnoIwZHCh0AASdgDQ0LPGWxYiIjrYERcTMjVcYFr5EmbUpagDEbsgL4XtDvL2ID2yjPRak6nePTGpDSxRZqQ8mLC6jRTx1PtrNjfvEfaU91tSH8n8/KJlegT+5dunPlfnapF4hx7ugaXaoo0o6rjmUuqu6Jubn6qSpJDRJzCPYrHhLlWjvtsak2ia1e9ZTr+qjMVq/Y8y03xpm5JA7a/j/MnaOxUbatqn9jF/cNs1LPYwCbKNM9d7OMYNdTJ+woPeMST0TFujFvj7iPVyGWaNXxZxv07DXGWqw==</latexit>

(e) Iterating Edges Phase

Collection C<latexit sha1_base64="oIQ2s0bKnhGJozmlpf4gR6Qyk7w=">AAAC0HicjVG5TsNAEH0xVwhXgJLGIkGiimwa6IiUhhIQOaQkQuvNJrHwhb1GQIQQLT9AC//CPyBKOvgLZhdH4hCCtWy/fTPv7c6ME3luIi3rOWdMTE5Nz+RnC3PzC4tLxeWVRhKmMRd1Hnph3HJYIjw3EHXpSk+0olgw3/FE0zmpqXjzTMSJGwZH8iISXZ8NArfvciaJ6pY7PpNDzrxR7ap8XCxZFUsv8yewM1Dafbx8qQLYD4tP6KCHEBwpfAgEkIQ9MCT0tGHDQkRcFyPiYkKujgtcoUDalLIEZTBiT+g7oF07YwPaK89Eqzmd4tEbk9LEBmlCyosJq9NMHU+1s2J/8x5pT3W3C/o7mZdPrMSQ2L9048z/6lQtEn3s6BpcqinSjKqOZy6p7oq6ufmpKkkOEXEK9ygeE+ZaOe6zqTWJrl31lun4q85UrNrzLDfFm7olDdj+Ps6foLFVsa2KfWCXqmrMauWxhnVs0jy3UcUe9lEn71Pc4R4PxqFxblwbNx+pRi7TrOLLMm7fAS/bls8=</latexit><latexit sha1_base64="LvPk5JS0tYnfHL/OTZmW/qt5c6M=">AAAC0HicjVHLTsJAFD3WF+ILdemmEUxckdaNLknYuEQjjwSImQ4DNPRlOzUSQoxbf8CtfpXxD/QvvDOWRCVGp2l75tx7zsy914k8N5GW9bpgLC4tr6zm1vLrG5tb24Wd3UYSpjEXdR56YdxyWCI8NxB16UpPtKJYMN/xRNMZVVW8eSPixA2DSzmORNdng8Dtu5xJorqljs/kkDNvUp2WrgpFq2zpZc4DOwNFZKsWFl7QQQ8hOFL4EAggCXtgSOhpw4aFiLguJsTFhFwdF5giT9qUsgRlMGJH9B3Qrp2xAe2VZ6LVnE7x6I1JaeKQNCHlxYTVaaaOp9pZsb95T7SnutuY/k7m5RMrMST2L90s8786VYtEH6e6BpdqijSjquOZS6q7om5ufqlKkkNEnMI9iseEuVbO+mxqTaJrV71lOv6mMxWr9jzLTfGubkkDtn+Ocx40jsu2VbbP7WKlko06h30c4IjmeYIKzlBDnbyv8YgnPBsXxq1xZ9x/phoLmWYP35bx8AFmTJQx</latexit>

C
<latexit sha1_base64="oIQ2s0bKnhGJozmlpf4gR6Qyk7w=">AAAC0HicjVG5TsNAEH0xVwhXgJLGIkGiimwa6IiUhhIQOaQkQuvNJrHwhb1GQIQQLT9AC//CPyBKOvgLZhdH4hCCtWy/fTPv7c6ME3luIi3rOWdMTE5Nz+RnC3PzC4tLxeWVRhKmMRd1Hnph3HJYIjw3EHXpSk+0olgw3/FE0zmpqXjzTMSJGwZH8iISXZ8NArfvciaJ6pY7PpNDzrxR7ap8XCxZFUsv8yewM1Dafbx8qQLYD4tP6KCHEBwpfAgEkIQ9MCT0tGHDQkRcFyPiYkKujgtcoUDalLIEZTBiT+g7oF07YwPaK89Eqzmd4tEbk9LEBmlCyosJq9NMHU+1s2J/8x5pT3W3C/o7mZdPrMSQ2L9048z/6lQtEn3s6BpcqinSjKqOZy6p7oq6ufmpKkkOEXEK9ygeE+ZaOe6zqTWJrl31lun4q85UrNrzLDfFm7olDdj+Ps6foLFVsa2KfWCXqmrMauWxhnVs0jy3UcUe9lEn71Pc4R4PxqFxblwbNx+pRi7TrOLLMm7fAS/bls8=</latexit><latexit sha1_base64="LvPk5JS0tYnfHL/OTZmW/qt5c6M=">AAAC0HicjVHLTsJAFD3WF+ILdemmEUxckdaNLknYuEQjjwSImQ4DNPRlOzUSQoxbf8CtfpXxD/QvvDOWRCVGp2l75tx7zsy914k8N5GW9bpgLC4tr6zm1vLrG5tb24Wd3UYSpjEXdR56YdxyWCI8NxB16UpPtKJYMN/xRNMZVVW8eSPixA2DSzmORNdng8Dtu5xJorqljs/kkDNvUp2WrgpFq2zpZc4DOwNFZKsWFl7QQQ8hOFL4EAggCXtgSOhpw4aFiLguJsTFhFwdF5giT9qUsgRlMGJH9B3Qrp2xAe2VZ6LVnE7x6I1JaeKQNCHlxYTVaaaOp9pZsb95T7SnutuY/k7m5RMrMST2L90s8786VYtEH6e6BpdqijSjquOZS6q7om5ufqlKkkNEnMI9iseEuVbO+mxqTaJrV71lOv6mMxWr9jzLTfGubkkDtn+Ocx40jsu2VbbP7WKlko06h30c4IjmeYIKzlBDnbyv8YgnPBsXxq1xZ9x/phoLmWYP35bx8AFmTJQx</latexit>

Subgraph G<latexit sha1_base64="MZkTDLfwceQDbxeeIh0cTIUX8qs=">AAACxnicjVHLSsNAFD2Nr1pfVZdugq3gqiRudGfBhV1WtA+oRZLptIbmxWSi1CL4A271h/wHcelO/8I7YwpqEZ2Q5My595yZe68b+14iLeslZ8zMzs0v5BcLS8srq2vF9Y1mEqWC8QaL/Ei0XSfhvhfyhvSkz9ux4E7g+rzlDo9UvHXFReJF4ZkcxbwbOIPQ63vMkUSdlo/LF8WSVbH0MqeBnYHS4dPNaxVAPSo+4xw9RGBIEYAjhCTsw0FCTwc2LMTEdTEmThDydJzjFgXSppTFKcMhdkjfAe06GRvSXnkmWs3oFJ9eQUoTO6SJKE8QVqeZOp5qZ8X+5j3WnupuI/q7mVdArMQlsX/pJpn/1alaJPo40DV4VFOsGVUdy1xS3RV1c/NLVZIcYuIU7lFcEGZaOemzqTWJrl311tHxN52pWLVnWW6Kd3VLGrD9c5zToLlXsa2KfWKXqmrMauWxhW3s0jz3UUUNdTTIe4B7PODRqBmhkRrXn6lGLtNs4tsy7j4AtdKSQQ==</latexit><latexit sha1_base64="IX+Lcf9RCy16ttLt8AXwuArOff4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugq3gqiRudFlwYZcV7QNqkWQ6rUPzYjJRShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1k0CkynFeC9bC4tLySnG1tLa+sblV3t5pp3EmGW+xOIhl1/dSHoiIt5RQAe8mknuhH/COPz7V8c4tl6mIo0s1SXg/9EaRGArmKaIuqmfV63LFqTlm2fPAzUEF+WrG5RdcYYAYDBlCcERQhAN4SOnpwYWDhLg+psRJQsLEOe5RIm1GWZwyPGLH9B3RrpezEe21Z2rUjE4J6JWktHFAmpjyJGF9mm3imXHW7G/eU+Op7zahv597hcQq3BD7l26W+V+drkVhiBNTg6CaEsPo6ljukpmu6JvbX6pS5JAQp/GA4pIwM8pZn22jSU3tureeib+ZTM3qPctzM7zrW9KA3Z/jnAfto5rr1Nxzt1Kv56MuYg/7OKR5HqOOBppokfcIj3jCs9WwIiuz7j5TrUKu2cW3ZT18AOxDj6M=</latexit>

G
<latexit sha1_base64="MZkTDLfwceQDbxeeIh0cTIUX8qs=">AAACxnicjVHLSsNAFD2Nr1pfVZdugq3gqiRudGfBhV1WtA+oRZLptIbmxWSi1CL4A271h/wHcelO/8I7YwpqEZ2Q5My595yZe68b+14iLeslZ8zMzs0v5BcLS8srq2vF9Y1mEqWC8QaL/Ei0XSfhvhfyhvSkz9ux4E7g+rzlDo9UvHXFReJF4ZkcxbwbOIPQ63vMkUSdlo/LF8WSVbH0MqeBnYHS4dPNaxVAPSo+4xw9RGBIEYAjhCTsw0FCTwc2LMTEdTEmThDydJzjFgXSppTFKcMhdkjfAe06GRvSXnkmWs3oFJ9eQUoTO6SJKE8QVqeZOp5qZ8X+5j3WnupuI/q7mVdArMQlsX/pJpn/1alaJPo40DV4VFOsGVUdy1xS3RV1c/NLVZIcYuIU7lFcEGZaOemzqTWJrl311tHxN52pWLVnWW6Kd3VLGrD9c5zToLlXsa2KfWKXqmrMauWxhW3s0jz3UUUNdTTIe4B7PODRqBmhkRrXn6lGLtNs4tsy7j4AtdKSQQ==</latexit><latexit sha1_base64="IX+Lcf9RCy16ttLt8AXwuArOff4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugq3gqiRudFlwYZcV7QNqkWQ6rUPzYjJRShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1k0CkynFeC9bC4tLySnG1tLa+sblV3t5pp3EmGW+xOIhl1/dSHoiIt5RQAe8mknuhH/COPz7V8c4tl6mIo0s1SXg/9EaRGArmKaIuqmfV63LFqTlm2fPAzUEF+WrG5RdcYYAYDBlCcERQhAN4SOnpwYWDhLg+psRJQsLEOe5RIm1GWZwyPGLH9B3RrpezEe21Z2rUjE4J6JWktHFAmpjyJGF9mm3imXHW7G/eU+Op7zahv597hcQq3BD7l26W+V+drkVhiBNTg6CaEsPo6ljukpmu6JvbX6pS5JAQp/GA4pIwM8pZn22jSU3tureeib+ZTM3qPctzM7zrW9KA3Z/jnAfto5rr1Nxzt1Kv56MuYg/7OKR5HqOOBppokfcIj3jCs9WwIiuz7j5TrUKu2cW3ZT18AOxDj6M=</latexit> 6

E

B
5
F

D

{B, E} {B, C, E} {B, C, E}
{D, F}

Iteration 1 2 3 4 5 6

{A, B, C, E}
{D, F} {G, H}

5
H

G
5
F

D

{A, B, C, E}
{D, F} {G, H, I}

5
H

J
I
4

1

{A, B, C, E}
{D, F} {G, H, I, J}

5
H

G
4

1

J
4

7
…Edge (v, v0)

<latexit sha1_base64="kTm/nRX1LaNLclC7puJ19jwiN98=">AAAC1XicjVLLSsNAFD2Nr1pfVVfiJtgKClISN7oMuHHZgn1ALZKk0zqYJiGZBErpTtz6A271l8Sdy/oX3pmmoBbRCUnOnHvOydyZOKHHY2EYbzltYXFpeSW/Wlhb39jcKm7vNOIgiVxWdwMviFqOHTOP+6wuuPBYK4yYPXA81nTuLmS9mbIo5oF/JYYh6wzsvs973LUFURw6yjhCihOk+h6OUb4ployKoYY+D8wMlCy9NnkHUA2Kr7hGFwFcJBiAwYcg7MFGTFcbJgyExHUwIi4ixFWdYYwCeRNSMVLYxN7Rs0+zdsb6NJeZsXK79BWP7oicOg7JE5AuIiy/pqt6opIl+1v2SGXKtQ3p7WRZA2IFbon9yzdT/tcnexHo4Vz1wKmnUDGyOzdLSdSuyJXrX7oSlBASJ3GX6hFhVzln+6wrT6x6l3trq/pEKSUr526mTfAhV0kHbP48znnQOK2YRsWsmSXLwnTksY8D+llMnMHCJaqoU3aKJzzjRWtqY+1ee5hKtVzm2cW3oT1+Aj5glDQ=</latexit><latexit sha1_base64="AXV+kTx+OAsFyVLVsUFPpt8KG4c=">AAAC1XicjVLLSsNAFD2Nr1pfVVfiJtgKClKSbnRZcOOygn1ALZKk0zo0TUIyCZTSnbj1B9zqL4l/oH/hnXEKahGdkOTMueeczJ2JG/k8EZb1mjMWFpeWV/KrhbX1jc2t4vZOMwnT2GMNL/TDuO06CfN5wBqCC5+1o5g5I9dnLXd4LuutjMUJD4MrMY5Yd+QMAt7nniOI4jBRxhEynCAz93CM8k2xZFUsNcx5YGtQgh71sPiCa/QQwkOKERgCCMI+HCR0dWDDQkRcFxPiYkJc1RmmKJA3JRUjhUPskJ4DmnU0G9BcZibK7dFXfLpjcpo4JE9Iupiw/Jqp6qlKluxv2ROVKdc2prers0bECtwS+5dvpvyvT/Yi0MeZ6oFTT5FiZHeeTknVrsiVm1+6EpQQESdxj+oxYU85Z/tsKk+iepd766j6m1JKVs49rU3xLldJB2z/PM550KxWbKtiX1ZLtZo+6jz2cUA/i41T1HCBOhqUneERT3g2WsbUuDPuP6VGTnt28W0YDx/I2JG8</latexit>

(v, v0)
<latexit sha1_base64="kTm/nRX1LaNLclC7puJ19jwiN98=">AAAC1XicjVLLSsNAFD2Nr1pfVVfiJtgKClISN7oMuHHZgn1ALZKk0zqYJiGZBErpTtz6A271l8Sdy/oX3pmmoBbRCUnOnHvOydyZOKHHY2EYbzltYXFpeSW/Wlhb39jcKm7vNOIgiVxWdwMviFqOHTOP+6wuuPBYK4yYPXA81nTuLmS9mbIo5oF/JYYh6wzsvs973LUFURw6yjhCihOk+h6OUb4ployKoYY+D8wMlCy9NnkHUA2Kr7hGFwFcJBiAwYcg7MFGTFcbJgyExHUwIi4ixFWdYYwCeRNSMVLYxN7Rs0+zdsb6NJeZsXK79BWP7oicOg7JE5AuIiy/pqt6opIl+1v2SGXKtQ3p7WRZA2IFbon9yzdT/tcnexHo4Vz1wKmnUDGyOzdLSdSuyJXrX7oSlBASJ3GX6hFhVzln+6wrT6x6l3trq/pEKSUr526mTfAhV0kHbP48znnQOK2YRsWsmSXLwnTksY8D+llMnMHCJaqoU3aKJzzjRWtqY+1ee5hKtVzm2cW3oT1+Aj5glDQ=</latexit><latexit sha1_base64="AXV+kTx+OAsFyVLVsUFPpt8KG4c=">AAAC1XicjVLLSsNAFD2Nr1pfVVfiJtgKClKSbnRZcOOygn1ALZKk0zo0TUIyCZTSnbj1B9zqL4l/oH/hnXEKahGdkOTMueeczJ2JG/k8EZb1mjMWFpeWV/KrhbX1jc2t4vZOMwnT2GMNL/TDuO06CfN5wBqCC5+1o5g5I9dnLXd4LuutjMUJD4MrMY5Yd+QMAt7nniOI4jBRxhEynCAz93CM8k2xZFUsNcx5YGtQgh71sPiCa/QQwkOKERgCCMI+HCR0dWDDQkRcFxPiYkJc1RmmKJA3JRUjhUPskJ4DmnU0G9BcZibK7dFXfLpjcpo4JE9Iupiw/Jqp6qlKluxv2ROVKdc2prers0bECtwS+5dvpvyvT/Yi0MeZ6oFTT5FiZHeeTknVrsiVm1+6EpQQESdxj+oxYU85Z/tsKk+iepd766j6m1JKVs49rU3xLldJB2z/PM550KxWbKtiX1ZLtZo+6jz2cUA/i41T1HCBOhqUneERT3g2WsbUuDPuP6VGTnt28W0YDx/I2JG8</latexit>

(B, E) (B,C) (D, F) (G, H)
{B, C, E}

{D, F} {G, H}

(A, E) (G, I) (G, J)
…

…

…
5
F

D

5
F

D

I6

6
C

E B
2 5

H

G

6

6
C

E B
2 5

F

D

6

6
C

E B
2

(c) G1
<latexit sha1_base64="kSJ/T6tdCMfD8dUfVgI2Nemumig=">AAACyHicjVHLSsNAFD2Nr1pfVXe6CbaCIJTEjS4LIoqrCvYBtZRkOq1D8yKZKKW48Qfc6peJf6B/4Z1pCmoRnZDkzLnnnJk740aeSKRlveWMufmFxaX8cmFldW19o7i51UjCNGa8zkIvjFuuk3BPBLwuhfR4K4q547seb7rDU1Vv3vE4EWFwLUcR7/jOIBB9wRxJVL183rXL3WLJqlh6mLPAzkCpulM4NAHUwuIrbtBDCIYUPjgCSMIeHCT0tGHDQkRcB2PiYkJC1zkeUCBvSipOCofYIX0HNGtnbEBzlZloN6NVPHpjcprYJ09IupiwWs3U9VQnK/a37LHOVHsb0d/NsnxiJW6J/cs3Vf7Xp3qR6ONE9yCop0gzqjuWpaT6VNTOzS9dSUqIiFO4R/WYMNPO6Tmb2pPo3tXZOrr+rpWKVXOWaVN8qF3SBds/r3MWNI4qtlWxr+xS9QyTkccu9nBA93mMKi5QQ52yBZ7wjBfj0oiMe2M0kRq5zLONb8N4/AQUaJD7</latexit><latexit sha1_base64="KKrPwt0ZHkarggObFi+JdjN3ceE=">AAACyHicjVHLSsNAFD2Nr1pfVZdugq3gqiRudFkQUVxVMLVQS0mm0zo0TcJkopTixh9wq18m/oH+hXfGFNQiOiHJmXPvOTP33iAJRaoc57Vgzc0vLC4Vl0srq2vrG+XNrWYaZ5Jxj8VhLFuBn/JQRNxTQoW8lUjuj4KQXwXDYx2/uuUyFXF0qcYJ74z8QST6gvmKKK962nWr3XLFqTlm2bPAzUEF+WrE5Rdco4cYDBlG4IigCIfwkdLThgsHCXEdTIiThISJc9yjRNqMsjhl+MQO6TugXTtnI9prz9SoGZ0S0itJaWOPNDHlScL6NNvEM+Os2d+8J8ZT321M/yD3GhGrcEPsX7pp5n91uhaFPo5MDYJqSgyjq2O5S2a6om9uf6lKkUNCnMY9ikvCzCinfbaNJjW16976Jv5mMjWr9yzPzfCub0kDdn+OcxY0D2quU3Mv3Er9JB91ETvYxT7N8xB1nKEBj7wFHvGEZ+vcSqw7a/yZahVyzTa+LevhA5ExkEw=</latexit>

G1
<latexit sha1_base64="kSJ/T6tdCMfD8dUfVgI2Nemumig=">AAACyHicjVHLSsNAFD2Nr1pfVXe6CbaCIJTEjS4LIoqrCvYBtZRkOq1D8yKZKKW48Qfc6peJf6B/4Z1pCmoRnZDkzLnnnJk740aeSKRlveWMufmFxaX8cmFldW19o7i51UjCNGa8zkIvjFuuk3BPBLwuhfR4K4q547seb7rDU1Vv3vE4EWFwLUcR7/jOIBB9wRxJVL183rXL3WLJqlh6mLPAzkCpulM4NAHUwuIrbtBDCIYUPjgCSMIeHCT0tGHDQkRcB2PiYkJC1zkeUCBvSipOCofYIX0HNGtnbEBzlZloN6NVPHpjcprYJ09IupiwWs3U9VQnK/a37LHOVHsb0d/NsnxiJW6J/cs3Vf7Xp3qR6ONE9yCop0gzqjuWpaT6VNTOzS9dSUqIiFO4R/WYMNPO6Tmb2pPo3tXZOrr+rpWKVXOWaVN8qF3SBds/r3MWNI4qtlWxr+xS9QyTkccu9nBA93mMKi5QQ52yBZ7wjBfj0oiMe2M0kRq5zLONb8N4/AQUaJD7</latexit><latexit sha1_base64="KKrPwt0ZHkarggObFi+JdjN3ceE=">AAACyHicjVHLSsNAFD2Nr1pfVZdugq3gqiRudFkQUVxVMLVQS0mm0zo0TcJkopTixh9wq18m/oH+hXfGFNQiOiHJmXPvOTP33iAJRaoc57Vgzc0vLC4Vl0srq2vrG+XNrWYaZ5Jxj8VhLFuBn/JQRNxTQoW8lUjuj4KQXwXDYx2/uuUyFXF0qcYJ74z8QST6gvmKKK962nWr3XLFqTlm2bPAzUEF+WrE5Rdco4cYDBlG4IigCIfwkdLThgsHCXEdTIiThISJc9yjRNqMsjhl+MQO6TugXTtnI9prz9SoGZ0S0itJaWOPNDHlScL6NNvEM+Os2d+8J8ZT321M/yD3GhGrcEPsX7pp5n91uhaFPo5MDYJqSgyjq2O5S2a6om9uf6lKkUNCnMY9ikvCzCinfbaNJjW16976Jv5mMjWr9yzPzfCub0kDdn+OcxY0D2quU3Mv3Er9JB91ETvYxT7N8xB1nKEBj7wFHvGEZ+vcSqw7a/yZahVyzTa+LevhA5ExkEw=</latexit>

4

2

6

6

2

C

A

E B
4

1 H

G

I

J
4

5

(d) G2
<latexit sha1_base64="1zE5lSCFzbwLIW4GwZvibWU+b4Q=">AAACyHicjVHLSsNAFD2Nr1pfVXe6CbaCIJSkG10WRBRXFewDainJdFoH8yKZKKW48Qfc6peJf6B/4Z1pCmoRnZDkzLnnnJk740aeSKRlveWMufmFxaX8cmFldW19o7i51UzCNGa8wUIvjNuuk3BPBLwhhfR4O4q547seb7m3J6reuuNxIsLgSo4i3vWdYSAGgjmSqEb5rFct94olq2LpYc4COwOl2k7h0ARQD4uvuEYfIRhS+OAIIAl7cJDQ04ENCxFxXYyJiwkJXed4QIG8Kak4KRxib+k7pFknYwOaq8xEuxmt4tEbk9PEPnlC0sWE1Wqmrqc6WbG/ZY91ptrbiP5uluUTK3FD7F++qfK/PtWLxADHugdBPUWaUd2xLCXVp6J2bn7pSlJCRJzCfarHhJl2Ts/Z1J5E967O1tH1d61UrJqzTJviQ+2SLtj+eZ2zoFmt2FbFvrRLtVNMRh672MMB3ecRajhHHQ3KFnjCM16MCyMy7o3RRGrkMs82vg3j8RMWyZD8</latexit><latexit sha1_base64="bojUgHTseYPdc4knpsmS319CUa0=">AAACyHicjVHLSsNAFD2Nr1pfVZdugq3gqiTd6LIgoriqYNpCLSWZTuvQvEgmSilu/AG3+mXiH+hfeGdMQS2iE5KcOfeeM3Pv9WJfpNKyXgvGwuLS8kpxtbS2vrG5Vd7eaaVRljDusMiPko7nptwXIXekkD7vxAl3A8/nbW98ouLtW56kIgqv5CTmvcAdhWIomCuJcqpn/Xq1X65YNUsvcx7YOaggX82o/IJrDBCBIUMAjhCSsA8XKT1d2LAQE9fDlLiEkNBxjnuUSJtRFqcMl9gxfUe06+ZsSHvlmWo1o1N8ehNSmjggTUR5CWF1mqnjmXZW7G/eU+2p7jahv5d7BcRK3BD7l26W+V+dqkViiGNdg6CaYs2o6ljukumuqJubX6qS5BATp/CA4glhppWzPptak+raVW9dHX/TmYpVe5bnZnhXt6QB2z/HOQ9a9Zpt1exLu9I4zUddxB72cUjzPEID52jCIW+BRzzh2bgwYuPOmHymGoVcs4tvy3j4AJOSkE0=</latexit>

G2
<latexit sha1_base64="1zE5lSCFzbwLIW4GwZvibWU+b4Q=">AAACyHicjVHLSsNAFD2Nr1pfVXe6CbaCIJSkG10WRBRXFewDainJdFoH8yKZKKW48Qfc6peJf6B/4Z1pCmoRnZDkzLnnnJk740aeSKRlveWMufmFxaX8cmFldW19o7i51UzCNGa8wUIvjNuuk3BPBLwhhfR4O4q547seb7m3J6reuuNxIsLgSo4i3vWdYSAGgjmSqEb5rFct94olq2LpYc4COwOl2k7h0ARQD4uvuEYfIRhS+OAIIAl7cJDQ04ENCxFxXYyJiwkJXed4QIG8Kak4KRxib+k7pFknYwOaq8xEuxmt4tEbk9PEPnlC0sWE1Wqmrqc6WbG/ZY91ptrbiP5uluUTK3FD7F++qfK/PtWLxADHugdBPUWaUd2xLCXVp6J2bn7pSlJCRJzCfarHhJl2Ts/Z1J5E967O1tH1d61UrJqzTJviQ+2SLtj+eZ2zoFmt2FbFvrRLtVNMRh672MMB3ecRajhHHQ3KFnjCM16MCyMy7o3RRGrkMs82vg3j8RMWyZD8</latexit><latexit sha1_base64="bojUgHTseYPdc4knpsmS319CUa0=">AAACyHicjVHLSsNAFD2Nr1pfVZdugq3gqiTd6LIgoriqYNpCLSWZTuvQvEgmSilu/AG3+mXiH+hfeGdMQS2iE5KcOfeeM3Pv9WJfpNKyXgvGwuLS8kpxtbS2vrG5Vd7eaaVRljDusMiPko7nptwXIXekkD7vxAl3A8/nbW98ouLtW56kIgqv5CTmvcAdhWIomCuJcqpn/Xq1X65YNUsvcx7YOaggX82o/IJrDBCBIUMAjhCSsA8XKT1d2LAQE9fDlLiEkNBxjnuUSJtRFqcMl9gxfUe06+ZsSHvlmWo1o1N8ehNSmjggTUR5CWF1mqnjmXZW7G/eU+2p7jahv5d7BcRK3BD7l26W+V+dqkViiGNdg6CaYs2o6ljukumuqJubX6qS5BATp/CA4glhppWzPptak+raVW9dHX/TmYpVe5bnZnhXt6QB2z/HOQ9a9Zpt1exLu9I4zUddxB72cUjzPEID52jCIW+BRzzh2bgwYuPOmHymGoVcs4tvy3j4AJOSkE0=</latexit>

C

F A

ED B

H

G

I

J

5 1 4

3

2 6

6

2 4

1

5

4

1

1

 k = 4

6

6
C

E B
2

A
24 6

6
C

E B
2

A
24 6

6
C

E B
2

A
24

B = 20 B = 14

Fig. 7. Example of CQG Selection

on our Estimation-based Benefit Model and get G(V, E , b)
(Fig. 7(b)). Then we select the unvisited edge with maximum
benefit in each iteration and put its two endpoints into a vertex
set. Fig. 7(e) shows details in each iteration (suppose k = 4),
in iteration 1, we select the edge (B, E). Since vertex B and E
never appear in any vertex set of C (Case 1), we add {B, E} to
C. In iteration 2, we pick the edge (B, C). we find that vertex
B exists in the set {B, E}, while vertex C does not appear any
vertex set of C (Case 3). Thus, we set vf = C, vt = B and
add vertex vf into m[vt] = {B, E} (Line 14). We also update
m[vf] by m[vf] = m[vt] because vf and vt refer to the same
vertex set (Line 15). We repeat the above steps until iteration 5,
where we select the edge (A,E). We find that vertex A does
not appear in any vertex set of C, while vertex E exists in
vertex set {B, C, E} (Case 2). Therefore, we set vf = A,
vt = E, add vertex vf into vertex set m[vt] = {B, C, E}, and
let m[vf] = m[vt]. Now the size of {A, B, C, E} equals
to k. Hence, we construct a subgraph (i.e., Fig. 7(c)) and
compute its benefit. After iterating all edges, we construct two
subgraphs (Fig. 7(c) and Fig. 7(d)) and we select the subgraph
with maximum benefit as the output (Fig. 7(c)). 2

Algorithm Analysis. In Algorithm 2, the time complexity
of computing each edge’s benefit is O(|E|), and the time
complexity of sorting E by benefit in descending order is
O(|E| · log|E|). Thus, the time complexity before iterating all
edges is dominated by sorting phase i.e., O(|E| · log|E|). In
iterating edge phase, the time complexity of maintaining the
collection of vertex set C (Line 6-15) is constant. the time
complexity of inducing subgraph G′(V ′, E′) and computing
its benefit (Line 17-18) also is constant. Thus, the time
complexity of iterating edge phase is O(E). Therefore, the
overall time complexity of our algorithm is O(|E| · log|E|).

Optimization for GSS. Based on our algorithm analysis, we
observe that the bottleneck of our algorithm is the phase of
sorting edges. Now, we introduce an optimization technique to
prune the number of edges before computing edges’ benefit,
and an optimization technique to early terminate the phase of
iterating edges. We use GSS+ to denote the optimized version
of GSS.

(1) Optimization by edges pruning. Since computing benefit

(0.2,0.2)

(0.9, 0.9)

(0
.6

.
0
.6

)

!0.5"#$%&

(0.5, 0.5)

(0
.6

,0
.6

)

(0.2,0.2) (0.6,0.6)
(0.5,0.5)

(0.4,0.4)

C

F A

ED B

H

G

I

(0.4,0.4)

J

(0.6,0.6)
(0.4,0.4)

(0
.1
"0

.1
)

Fig. 8. Example of Edge Pruning

of each edge and sorting edges by benefit is time-consuming
in our algorithm GSS, an intuitive optimization method is
to reduce the number of edges. Here, we propose a heuris-
tic technique to prune edges. Intuitively, we would like
that the subgraph contains more “uncertain” edges (e.g.,
weight ∈ [0.3, 0.7]) because it usually provides much more
“information” to enhance the quality of cleaning models (e.g.,
EM model). Therefore, we could prune those edges with
weight /∈ [0.3, 0.7] because those edges could be answered
by the machine algorithm easily.

(2) Optimization by early termination. If we only want to
compute the “best” subgraph, it is unnecessary for us to
iterate all edges to find all subgraphs. Because we access the
edge in descending order, the “best” subgraph is likely to be
discovered in the first m subgraphs. Therefore, we can early
terminate the loop if we convince that the “best” subgraph
has already existed in our current finding m (e.g., m = 20)
subgraphs. We set m = 20 for our GSS+ algorithm.

However, we should know that these pruning rules may let
us miss the “best” subgraph. Nevertheless, we will show that
GSS+ with these pruning rules still performs well in practice
(see experiments in Section VII).

Example 7: [Example of Edges Pruning] Figure 8 is an
example of edge pruning. We can prune those edges with
weight /∈ [0.3, 0.7]. Thus, we can reduce the number of edges
to save run time of computing edges’ benefit and sorting. 2

Discussion. As mentioned earlier, compared with single ques-
tions, composite questions can provide more context. However,
a user is often preferred to interact with a small (and thus
succinct) graph, instead of a large graph. Hence, the number
of vertices k is typically small (e.g., k <= 10).

VI. USER OPERATIONS ON COMPOSITE QUESTIONS

In this section, we describe how the user can interact with
the composite question to provide high-quality results in a
user-friendly way. Roughly speaking, we consider two types
of interaction – label edge and label vertex.

Label Edge. As introduced before, each edge links two
possible matching entities, either tuple-level entities (e.g.,
t1 and t2 in Table I) or attribute-level entities (e.g., “ACM
SIGMOD”↔“SIGMOD Conf.”). Therefore, there are two pos-
sible operations on edge. The first one is to confirm the edge to
label that its associated two vertices (i.e., entities) are the same
entity, while the second one is to split the edge to denote that
the two entities are not the same entity. (i) If the user denotes
that two tuple-level entities refer to the same entity, it will

(0.8, 0.8)

t1

t3t2

(0
.7

, 0
.7

)

(0
.6

, 0
.6

)

SIGMODSIGMOD Conf.

ACM SIGMOD

Outliers Possible Matching

(0.8, 0.8)

t1

t3t2

(0
.7

, 0
.7

)

(0
.6

, 0
.6

)

SIGMODSIGMOD Conf.

ACM SIGMOD

Outliers Possible Matching

Label Edge

Label Vertex

Label

Check Outlier
Repairing Value Select Standard Value

Label

Check Outlier
Repairing Value

Label

Select Standard Value

(a) Example of Label Edge (t1, t2)

(b) Example of Label Vertex t1

! "

Label

$

Fig. 9. Example of User Operations on a CQG

treat their attribute-level entities also as the same entity. As
shown in Fig. 9(a), edge (t1, t2) links two tuple-level entities
(t1 and t2) and attribute-level entities (the attribute for X).
When the user clicks edge (t1, t2), our system will show
details of (t1, t2) in table. If the system detects that there exists
outliers (or missing values) in t1 and t2, it will suggest the
outlier repairing values (or missing value imputation results).
For example, in Fig. 9(a)– ! , the user may first check the
outlier repairing value and then check whether t1 and t2 refer
to the same entity. Next, the user may click button to
return the labeled answer. After that, the edge (t1, t2) will be
confirmed. It depicts that entity t1 and t2, as well as t1[Venue]
and t2[Venue], are matching. (ii) If the user clicks button,
it will let the user further check the attribute-level duplicates
candidates (i.e., A-questions) in Fig. 9(a)– ! .

Label Vertex. Since each label edge operation can only pro-
vide a group of labeled answers, we also support label vertex
operation. This type of operation can let the user label all edges
linked to the same vertex. Therefore, this operation provides
much more labeled answers in each interaction compared
with the label edge operation. In Fig. 9(b), the vertex t1
links two edges (t1, t2) and (t1, t3), namely two tuple-level
duplicates candidates (i.e., T -questions) for EM model and
two A-questions for standardizing attribute-level duplicates.
For example, when the user clicks the vertex t1 in Fig. 9(b),
the system first constructs an EM cluster with three records –
{t1, t2, t3} as shown in Fig. 9(b)– ! . The user may exclude
some records from this cluster by clicking button and then
label the remaining records as matching by clicking button.
Our system will further show the A-questions in Fig. 9(b)– !

for the user to label.

VII. EXPERIMENT

A. Experimental Setup

Datasets. We used three real-world datasets.
(D1) DB Papers. We crawled 50,483 papers (13,915 distinct
papers), which were published on leading database confer-
ences (e.g., SIGMOD, VLDB, ICDE), from six sources (e.g.,

Dataset (D1)
DB Papers

(D2)
NBA Players

(D3)
Books

#-Attributes 6 17 17
#-Tuples 50,483 13,486 7,676

#-DistinctTuples 13,915 4,644 3,702
Missing Values% 15.1% 8.2% 9.2%

Outlier% 1.1% 1.3% 2.1%
TABLE IV

STATISTICS OF EXPERIMENT DATASETS

DBLP and Google Scholar), with the schema (Title, Authors,
Affiliation, Venue, Year, Citations).
(D2) NBA Players. We collected 13,486 records (4,644 distinct
NBA Players) from three NBA communities (e.g., https:
//www.basketball-reference.com/). Each record contains 17
attributes, e.g., (Player, Position, Team, Nationality, University
(Univ.), #Games, #Points, . . .).
(D3) Books. A book ratings dataset was collected from two
mainstream websites (e.g., https://www.goodreads.com/). The
dataset has 17 attributes, e.g., (Name, Author, PubDate, Rating,
NumofRating, Publisher (Publ.), Language (Lang), . . .), and
7,676 records (3,702 distinct books).

In summary, the statistics of experimental datasets are
shown in Table IV. We obtained the ground truth of tested
datasets via crowdsourcing [23], [8].

Visualization Tasks. Table V shows 18 visualizations used in
the experiment, which are selected to be representative, so as
to cover most meaningful cases.

Algorithms. We compared the following algorithms: (i) GSS:
our composite question graph (CQG) selection algorithm in
the Section V-B. (ii) GSS+: the optimized version of GSS.
(iii) Random: it selects CQG randomly.

For evaluating the effectiveness of our CQG selection algo-
rithms GSS and GSS+, we have implemented the following
algorithms as baselines: (iv) Branch and Bound (B&B) [21]
is an algorithm to compute Heaviest k-subgraph, which can
be used for CQG selection problem, and (v) α-B&B is an α-
approximation version of B&B [21], where α is the approxi-
mation ratio.

For comparing our CQG selection mechanism with a single

VLDB
SIGMOD

SIGMOD Record
ICDE

IEEE TKDE
VLDB Journal

TODS
EDBT
CIDR

PODS

0 150000 300000

SUM(Citations)
SIGMOD

VLDB
ICDE

ACM Sigmod Record
Proceedings of the VLDB Endowment

IEEE Trans. on Knowl. & Data Eng.
Trans. on Database Systems (TODS)

IEEE TKDE
CIDR

The VLDB Journal

0 70000 140000

SUM(Citations)
VLDB

SIGMOD
ACM Sigmod Record

ICDE
IEEE TKDE

TODS
CIDR
EDBT

The VLDB Journal
PODS

0 90,000 180,000

SUM(Citations)
VLDB

SIGMOD
SIGMOD Record

ICDE
IEEE TKDE

VLDB Journal
TODS
EDBT
CIDR

PODS

0 100000 200000

SUM(Citations)
SIGMOD Intl. Conf. On Management of data

Proceedings of the VLDB Endowment
VLDB

ACM SIGMOD Record
PVLDB

IEEE Trans. on Knowl. & Data Eng.
Trans. on Database Systems (TODS)

Acm Sigmod Record
ICDE

IEEE TKDE

0 100000 200000

SUM(Citations)

(a) Initial Visualization (b) After 5 Questions (c) After 10 Questions (d) After 15 Questions (e) Ground Truth

�1

Fig. 10. Process of Visualization Improvement (Q1)

(1999,2005]

(2005,2010]

(2010,2015]

(2015,2018]

0 1 2 3 4

3

0

2

0

COUNT(Year)

(1999,2005]

(2005,2010]

(2010,2015]

(2015,2018]

0 250 500 750 1000

421

911

702

425

COUNT(Year)

(1999,2005]

(2005,2010]

(2010,2015]

(2015,2018]

0 250 500 750 1000

421

984

707

431

COUNT(Year)

(a) Initial Visualization (b) After 15 Questions (c) Ground Truth

�1

Fig. 11. Process of Visualization Improvement (Q7)

CIKM
0.6%

CIDR
2.9%

TODS
3.5%

SIGMOD Record
4.2%

VLDB Journal
6.4%
EDBT
7.0%

TKDE
11.6%

ICDE
16.6%

SIGMOD
20.5%

VLDB
26.7%

CIKM
0.5%

CIDR
2.9%

TODS
3.3%

SIGMOD Record
3.6%

VLDB Journal
5.5%
EDBT
7.7%

TKDE
11.0%

ICDE
18.4%

SIGMOD
20.7%

VLDB
26.5%

ACM SIGMOD Record
2.6%

Trans. on Database Systems (TODS)
3.0%

The VLDB Journal
4.0%
CIDR
4.2%
ICDE
8.5%

EDBT
8.8%

IEEE Trans. on Knowl. & Data Eng.
12.4%

PVLDB
13.1%

SIGMOD Intl. Conf. On Management of data
17.1%

Proceedings of the VLDB Endowment
26.1%

(a) Initial Visualization (b) After 15 Questions (c) Ground Truth

�1

Fig. 12. Process of Visualization Improvement (Q8)

Q V X-axis Y-axis D WHERE TRANSFORM S L
1 B Venue S(Citations) D1 – GB (Venue) D 10
2 B Venue A(Citations) D1 – GB (Venue) – –
3 P Venue C(Venue) D1 – GB (Venue) D 10

4 B Citations C(Citations) D1 – BIN(Citations) BY
INTERVAL 200 A –

5 B Year C(Year) D1 – BIN(Year) BY
INTERVAL 5 A –

6 B Venue S(Citations) D1 – GB (Venue) A –

7 B Year C(Year) D1
Year > 1999 and
Venue = SIGMOD

and Citations > 100

BIN(Year) BY
INTERVAL 5 – –

8 P Venue C(Venue) D1 Year > 2009 GB (Venue) D 10
9 B Team S(#Points) D2 – GB (Team) D 10

10 B Univ. C(Univ.) D2 Team = lakers GB (Univ.) – –
11 B Player #Games D2 – – D 10

12 B #Points C(#Points) D2 Position = Forward BIN(#Points) BY
INTERVAL 5 A –

13 P Player S(#Points) D2 Position = Guard GB(Player) D 10
14 P Publ. C(Publ.) D3 – GB (Publ.) D 10
15 B Publ. A(Rating) D3 Lang = English GB (Publ.) D 10
16 B Author A(Rating) D3 – GB (Author) D 10
17 B Author Rating D3 Lang = English – D 5

18 B Rating C(Rating) D3 – BIN(Rating)) BY
INTERVAL 1 – –

TABLE V
VISUALIZATION TASKS. COLUMN Q FOR QUERY, V FOR VISUALIZATION
(B: BAR, P: PIE), Y-AXIS (S: SUM, A: AVG: C: COUNT), TRANSFORM
(GB: GROUP BY), S FOR SORT (D: DESC, A: ASC), L FOR LIMIT.

question strategy, we have implemented an adaptive method
that selects the “best” single question from repairing candidate
sets as follows. (vi) Single: it selects a set of single questions
to ask the user in each iteration. A single question is a pair of
tuples to be matched (T -question ∈ QT), a pair of attributes
to be standardized (A-question ∈ QA), a tuple with a missing
value imputation result to be checked (M -question ∈ QM), or
a tuple with a possible outlier repairing result to be verified
(O-question ∈ QO). For a fair comparison, we treat a CQG
as a unit cost and take a single question as 1

m unit cost (m
equals to #-edges of a CQG). In each iteration, Single selects
m questions from candidate sets. More specifically, m

4 single
questions are selected from the candidate sets QT , QA, QM ,
and QO, respectively.

Experimental Environment. We implemented all algorithms
by Python. We conducted all experiments on a Ubuntu server
with 2.5 GHz 4 cores Intel CPU and 16GB RAM.

B. Experimental Results

Exp-1: The End-to-End Evaluation. In the first set of
experiments, we tested the end-to-end performance of VIS-
CLEAN. We used the GSS to select the “best” CQG in each
iteration to interact with the user. We set budget=15 for the
number of iterations (one CQG in each iteration) and k=10
for the size of a CQG. We used the Earth Mover’s Distance,
EMD(Q(D),Q(Dg)), to quantify the visualization distance
between current visualization (Q(D)) and the visualization
(Q(Dg)) generated by the ground truth. The smaller the EMD
is, the better the visualization quality is.

We first show a real running example to study our end-
to-end performance. We use the visualization query Q1 in
Table V, which visualizes the top-10 Venues ranking by total
Citations. As shown in Fig. 10(a), it depicts the initial dirty vi-
sualization. The visualization distance between Fig. 10(a) and
Fig. 10(e) (ground truth) is EMD(Fig.10(a),Fig.10(e))=0.031.
After we asked 5 CQG questions, the visualization (Fig. 10(b))
is improved a lot. For example, many synonymous bars (e.g.,
“VLDB” and “PVLDB”) are merged, and some tuple-level dupli-
cates are removed by the EM model. The visualization distance
between the current visualization (Fig. 10(b)) and the ground
truth is EMD(Fig.10(b),Fig.10(e)) = 0.014. After asking 10
CQG questions, the visualization (Fig. 10(c)) is significantly
improved, which is already quite similar to the ground truth
(Fig. 10(e)). For example, the top-3 Venues are the same as the
ground truth. The Conference PODS first appears among the
top-10 bars because VISCLEAN standardizes many attribute-
level duplicates referring to the PODS entity, e.g., standardize
“PODS”, “In Pods”, and “PODS 2018”. Therefore, the total

0 2 4 6 8 10 12 14
Iteration

(a) DB Pape s

0

2

4

6

8

EM
D

×10−2

Q1
Q2
Q3
Q4

Q5
Q6
Q7
Q8

0 2 4 6 8 10 12 14
Ite ation

(b) NBA Playe s

0

2

4

6

8 ×10−3

Q9
Q10
Q11
Q12
Q13

0 2 4 6 8 10 12 14
Ite ation
(c) Books

0

2

4

6

8

×10−3

Q14
Q15
Q16
Q17
Q18

Fig. 13. EMD vs. Budget

0 2 4 6 8 10 12 14
Iteration

(a) DB Papers (Q1)

0.5

1.0

1.5

2.0

2.5

3.0

EM
D

×10−2

0 2 4 6 8 10 12 14
Ite)ation

(b) NBA Players (Q9)

1

2

3
×10−3

0 2 4 6 8 10 12 14
Ite)ation

(c) Books (Q14)

1

2

3

×10−3

GSS GSS+ Singl B&B 5-B&B Random

Fig. 14. EMD vs. Budget

Citations of PODS increased. After 15 iterations, VISCLEAN
stops cleaning because our budget is consumed up, and we can
see that the cleaned visualization (Fig. 10(d)) is very similar to
the visualization generated from the ground truth (Fig. 10(e)).
The EMD(Fig.10(d), Fig.10(e)) = 0.006. Note that, we need
to ask hundreds of questions to clean the entire dataset to
produce the ground truth.

From Fig. 10(d), we can learn that although the exact
Citations of each Venue still have tiny differences with the
visualization generated from ground truth, the order of each
Venue is the same as the ground truth, which can support lots
of visualization analysis scenarios.

We also depict the quality improvement of visualization Q7.
This bar chart shows the total number of papers (citations>
100) published at the SIGMOD conference every 5-year period
after 1999. As shown in Fig. 11(a), the bar chart is very
dirty compared with the ground truth (Fig. 11(c)) because of
attribute-level duplicates (e.g.,SIGMOD and SIGMOD Conf.) in
the selective predicate Venue = SIGMOD. This leads to that the
number of papers within every five years cannot be counted
accurately. However, VISCLEAN improves its quality a lot
with 15 questions, as shown in Fig. 11(b). Similarly, as shown
in Fig. 12, we can make a similar observation on the pie chart
Q8, and we omit the discussion due to the space constraint.

Next, we report how the EMD(Q(D),Q(Dg)) decreases
in the cleaning process. Fig. 13 shows that VISCLEAN can
significantly reduce the EMD with a small budget. We take
visualization Q1 in Fig. 13(a) as an example to illustrate how
the EMD between current visualization and the ground truth
change. In the initial status, the EMD is 0.031. In iteration 1,
after the user answers a CGQ question, the EMD sharply
decreases to 0.018 because lots of tuple-level duplicates and
attribute-level duplicates are removed by data cleaning models.
Then, the EMD steadily decreases in the interactive cleaning
process. After 15 iterations, it produces the cleaned visu-
alization (Fig. 10(d)), and its EMD reduces to 0.006. We
can see that the visualization quality of Q1 is significantly
improved from the initial status (Fig. 10(a)). Similarly, the
EMD gradually decreases in the interactive cleaning process
on visualization Q2. After 14 iterations, it terminates the
cleaning process because the user satisfies the cleaning results.
Similar observations can be derived by experiments on other
datasets (Fig. 13(b) and Fig. 13(c)). We omit to discuss due
to space limitations.

We make two observations from this group of experiments:
(i) VISCLEAN can significantly improve the visualization

quality with a small budget (i.e., #-iterations).
(ii) Cleaning different visualizations generated from the same
dataset needs different budgets.

Exp-2: Effectiveness of CGQ Selection. The main purpose in
this group of experiments is to test: (i) whether the composite
questions are more effective than asking a group of single
questions in isolation, and (ii) whether our CQG selection
algorithms are effective enough compared with the exact CQG
selection algorithm B&B and its α-approximation version α-
B&B (α = 5).

We set k = 10 for the size of a CQG in each iteration and
set budget = 15 for the #-iterations.

Figure 14 shows that all algorithms we tested can reduce the
EMD in 15 iterations. We make the following observations:
(i) The algorithms asking composite questions, GSS, GSS+,
and B&B, are better than the algorithm Single asking a group
of single questions in isolation. The reason is that composite
questions can provide more information to improve the quality
of cleaning models, and thus enhance the visualization quality.
(ii) The effectiveness of our CQG selection algorithms, GSS
and GSS+, are similar (but slightly worse) to the exact CQG
selection algorithm B&B. However, GSS and GSS+ algorithms
outperform 5-B&B by 30%-60%. Experimental results verify
the effectiveness of GSS and GSS+.

Next, we evaluated the effectiveness of our composite
questions mechanism and single questions strategy in terms
of the human cost. First, we recruited 20 participants from
the CS Department as real users to participate in this group
of experiments. All participants know visualization and have
the necessary skills of interacting with the graph and table,
but none of them is familiar with data cleaning. Before the
experiment, we asked each participant to browse experimental
datasets and made a demonstration on a composite question
and a group of single questions for each dataset in our system.
We then asked each participant to answer 15 iterations of
composite questions and 15 iterations of single questions
on three datasets. We recorded the interaction time of each
question in each iteration. Finally, we calculated the average
user time across all participants in each iteration.

Figure 15 shows the average user time of answering a CQG
question and a group of single questions in each iteration.
Overall, the user spends less time answering a CQG question
compared with a group of single questions in each iteration.
For example, in Fig. 15(a), the user spends about 520 seconds
answering 15 iterations of CQG questions, while spends about

0 5 10 15
Iteration

(a) DB Papers

0.0

0.2

0.4

0.6

0.8

U
se
r T

im
e
(s
ec
on
ds
) ×103

Composite
Single

0 5 10 15
Iteration

(b) NBA Players

0.0

0.2

0.4

0.6

0.8

×103

Composite
Single

0 5 10 15
Iteration
(c) Books

0.0

0.2

0.4

0.6

0.8
×103

Composite
Single

Fig. 15. Average User Time vs. Budget

0 200 400 600
User Time (seconds)
(a) DB Papers (Q1)

0.5

1.0

1.5

2.0

2.5

3.0

EM
D

×10)2

Composite
Sing e

0 200 400 600
User Time (seconds)
(b) NBA P a(ers (Q9)

1.0

1.5

2.0

2.5

3.0

×10)3

Composite
Sing e

0 200 400 600
User Time (seconds)

(c) Books (Q14)

1

2

3

×10)3

Composite
Sing e

Fig. 16. Average User Time vs. EMD (Budget = 15)

Tasks WrongLabel% (W%) Completeness% (C%)
0% 5% 10% 100% 95% 90%

Q1 15 17 19 15 16 18.5
Q2 14 16 18.5 14 15.5 17
Q3 15 17.5 19.5 15 17 19

TABLE VI
#-QUESTIONS ASKED UNDER DIFFERENT SETTINGS (AVERAGE)

860 seconds answering 15 iterations of a group of single
questions. Similarly, Fig. 16 reports how the EMD of three
queries decreases according to the user time. It shows that the
EMD of the composite questions mechanism decreases faster
than the EMD of the single questions strategy. For example,
in Fig. 16(b), when the user time is 400 seconds, the EMD of
the composite questions mechanism drops to 0.0007 while the
EMD of the single questions strategy only declines to 0.0018.

Figures 15 and 16 tell us that the composite questions mech-
anism saves about 40% user time compared with the single
questions strategy. The reason is that the user can answer
composite questions more easily and precisely compared with
a set of single questions in isolation.

Exp-3: Impact of User Input. In this part, we evaluated
the performance of VISCLEAN with incorrect and incomplete
user answers, respectively. To this end, we produce some errors
among the former answers of experts in Exp-1. More specif-
ically, for testing incorrect user inputs, we randomly injected
5% and 10% wrong labels into experts’ answers to a CQG. For
evaluating incomplete user input, we randomly sampled 95%
and 90% labels from their answers. Finally, we repeated this
set of experiments three times to compute the average results.
The results are shown in Table VI. For example, in task Q1,
when we injected 5% wrong labels, VISCLEAN only asks 17
CQG to achieve a very similar high-quality result as the one
without wrong labels, with only two more CQG questions.
What’s more, when Completeness%=95%, VISCLEAN costs
only one more CQG than that of Completeness%=100%.
Therefore, our approach can tolerate reasonably incorrect and
incomplete user inputs.

Exp-4: Efficiency of CQG Selection. We also compared the
efficiency of our CQG selection algorithms GSS and GSS+

with two baselines B&B and α−B&B.
We first fixed the size of the ERG (#-edges = 20000) and

varied the size of CQG (k from 5 to 30).
Figure 17(a) reports the results and tells us the followings:

(i) Our algorithm GSS and GSS+ significantly outperform the
B&B, 5-B&B, and 10-B&B; (ii) It is hard for B&B, 5-B&B, and

5 10 15 20 25 30
k

(a) Vary k (#-Edges = 20000)

0

200

400

600

800

1000

Ti
m
e
(s
ec
on

ds
)

0 10000 20000 30000 40000
#-Edges

(b) Vary #-Edges (k = 5)

0

2

4

6

8

10

Ti
m
e
(s
ec
on

ds
)

GSS GSS+ B&B 5-B&B 10-B&B

Fig. 17. The Efficiency of CQG Selection

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15Q16Q17Q18
Visualization Tasks

0

2

4

6

8

10

M
ac
hi
ne
 T
im

e
(s
ec
on
ds
)

DB Papers

NBA Players
Books

Train Models
CQG Selection
Repair & Update

Fig. 18. Average Machine Time in Each Iteration

10-B&B to efficiently compute a CQG when k > 10; and (iii)
GSS+ outperforms GSS by 30%− 40%.

Next, we set k = 5 and varied #-edges of the ERG
from 5000 to 40000. As shown in Fig. 17(b), GSS and
GSS+ outperform the B&B, 5-B&B, and 10-B&B. Besides,
thanks to optimization techniques (i.e., edges pruning and early
termination), GSS+ is faster than GSS by 30%− 40%.

We computed the average machine time for each component
of VISCLEAN. Fig. 18 shows the average machine time in each
iteration of each visualization task. It shows that Train Models
takes the bulk of the time because it needs to train (or fine
tune) the EM model for removing tuple-level duplicates and
maintain kNN for repairing outliers and missing values.

VIII. RELATED WORK

Progressive Visualization aims to compute an approximate
visualization at interactive speeds and then continues to im-
prove its quality [26], [18]. A recent study [39] suggests that
(i) the users can discover more insights through progressive
visualization and (ii) progressive visualization is a promising
approach to achieve scalability in the visual analysis system.
Our work is the first to do progressive visualization from a
dirty data perspective, not from a performance perspective.

Generic Data Cleaning have been widely studied from rule-
based detection algorithms [1], [14], [37], quantitative error
detection algorithms that expose outliers in the data [27],
to record linkage and de-duplication algorithms for detecting

duplicate data records (see [12] for surveys) such as Tamr.
There are many tuple-level de-duplication techniques [34],
[19], [9], [7], [22], and attribute-level data transformation for
various data types [11], [38], [33], [40]. We used [19] to detect
and remove tuple-level duplicates and used [11] to detect and
remove attribute-level duplicates candidates.

Task-driven Data Cleaning. ActiveClean [20], an iterative
cleaning framework, aims to clean a small subset of data to
achieve the high quality of a model similar to the case if the
data was fully cleaned. Altwaijry et al. study the problem of
query-driven data cleaning [4], where given a query, they clean
data relevant to the query. However, they focus on the entity
resolution problem and do not consider to clean other types of
errors (e.g., outliers). Besides, they do not consider whether
the data errors affect the quality of visualizations.

Data Cleaning for Visualization. Tableau Prep (https://
tableau.com/products/prep) provides operations such as filter,
split, rename to clean and transform dataset. OpenRefine (http:
//openrefine.org/) supports de-duplication and simple string
transformation. Data Wrangler [17] provides some simple
string transformation such as replacing, string splitting, etc.
DataXFormer [3] can leverage the user-provided examples to
generate string transformations from web tables and knowl-
edge bases. However, these tools need to heavily involve the
user to clean the dataset.

IX. CONCLUSION

In this paper, we have studied the problem that is progres-
sively turning bad visualizations into good ones by interactive
data cleaning. We have presented an errors and repairs graph
to model all possible errors and repairs. We have also proposed
to use the composite question, i.e., a group of single questions
to be treated as one question, to ask the user. We have further
presented a novel GUI for easy user interaction. Finally, we
have devised an effective and efficient composite question
selection algorithm that asks the most beneficial question to
generate the best visualization results. Experimental results on
real datasets have shown that our methods can generate high-
quality visualizations by asking a small number of questions.
Note that, a potential problem is whether these repairs can be
directly pushed back to clean the database gradually. In most
practical settings, the users treat these tables as materialized
views for their downstream applications. Instead of directly
applying these updates, they should be typically used as
suggestions for the DBA to approve.
Acknowledgement. This work was supported by 973 Pro-
gram of China (2015CB358700), NSF of China (61632016,
61521002, 61661166012), Huawei, and TAL Education.

REFERENCES

[1] Z. Abedjan, C. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker.
Temporal rules discovery for web data cleaning. PVLDB, 9(4), 2015.

[2] Z. Abedjan, X. Chu, and D. D. et.al. Detecting data errors: Where are
we and what needs to be done? PVLDB, 9(12):993–1004, 2016.

[3] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, and et. al. Dataxformer:
A robust transformation discovery system. In ICDE, 2016.

[4] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra. Query-driven
approach to entity resolution. PVLDB, 6(14):1846–1857, 2013.

[5] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan. Query-oriented
data cleaning with oracles. In SIGMOD, 2015.

[6] C. Binnig, L. D. Stefani, T. Kraska, E. Upfal, E. Zgraggen, and Z. Zhao.
Toward sustainable insights, or why polygamy is bad for you. In CIDR.

[7] C. Chai and et al. A partial-order-based framework for cost-effective
crowdsourced entity resolution. VLDB J., 2018.

[8] C. Chai, J. Fan, G. Li, J. Wang, and Y. Zheng. Crowdsourcing database
systems: Overview and challenges. In ICDE 2019.

[9] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced
entity resolution: A partial-order approach. In SIGMOD, 2016.

[10] X. Chu, J. Morcos, and et al. KATARA: a data cleaning system powered
by knowledge bases and crowdsourcing. In SIGMOD, 2015.

[11] D. Deng, G. Li, W. Tao, and et.al. Unsupervised String Transformation
Learning for Entity Consolidation. In ICDE, 2019.

[12] F. N. et al. An Introduction to Duplicate Detection. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2010.

[13] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record
matching and data repairing. In SIGMOD, 2011.

[14] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with
editing rules and master data. VLDBJ, 21(2):213–238, 2012.

[15] J. Hullman and et al. In pursuit of error: A survey of uncertainty
visualization evaluation. IEEE Trans. Vis. Comput. Graph., 25(1), 2019.

[16] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[17] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In CHI, 2011.

[18] A. Kim, E. Blais, A. G. Parameswaran, and et.al. Rapid sampling for
visualizations with ordering guarantees. PVLDB, 2015.

[19] P. Konda, S. Das, P. S. G. C., A. Doan, and et al. Magellan: Toward
building entity matching management systems. PVLDB, 2016.

[20] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and et al. Activeclean:
Interactive data cleaning for statistical modeling. PVLDB, 2016.

[21] M. Letsios, O. D. Balalau, M. Danisch, E. Orsini, and M. Sozio. Finding
heaviest k-subgraphs and events in social media. In ICDM Workshops,.

[22] G. Li, C. Chai, and et al. CDB: optimizing queries with crowd-based
selections and joins. In SIGMOD, 2017.

[23] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data
management: A survey. IEEE Trans. Knowl. Data Eng., 2016.

[24] Y. Luo, X. Qin, N. Tang, and G. Li. DeepEye: Towards Automatic Data
Visualization. In ICDE, 2018.

[25] Y. Luo, X. Qin, N. Tang, G. Li, and X. Wang. Deepeye: Creating good
data visualizations by keyword search. In SIGMOD, 2018.

[26] M. Procopio, C. Scheidegger, E. Wu, and R. Chang. Selective wander
join: Fast progressive visualizations for data joins. Informatics, 2019.

[27] N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and D. Srivastava.
Combining quantitative and logical data cleaning. PVLDB, 9(4), 2015.

[28] X. Qin, Y. Luo, N. Tang, and G. Li. Deepeye: Visualizing your data by
keyword search. In EDBT, 2018.

[29] X. Qin, Y. Luo, N. Tang, and G. Li. Deepeye: An automatic big data
visualization framework. Big Data Mining and Analytics, 2018.

[30] X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more
efficient and effective: A survey. The VLDB Journal, 2019.

[31] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining
outliers from large data sets. In SIGMOD, 2000.

[32] A. Satyanarayan, D. Moritz, and et al. Vega-lite: A grammar of
interactive graphics. IEEE Trans. Vis. Comput. Graph., 23(1), 2017.

[33] R. Singh. Blinkfill: Semi-supervised programming by example for
syntactic string transformations. PVLDB, 2016.

[34] R. Singh, V. V. Meduri, A. K. Elmagarmid, S. Madden, P. Papotti,
J. Quiané-Ruiz, A. Solar-Lezama, and N. Tang. Synthesizing entity
matching rules by examples. PVLDB, 11(2):189–202, 2017.

[35] N. Tang, E. Wu, and G. Li. Towards democratizing relational data
visualization. In SIGMOD, pages 2025–2030, 2019.

[36] M. Vartak, S. Rahman, and et.al. SEEDB: efficient data-driven visual-
ization recommendations to support visual analytics. PVLDB, 2015.

[37] J. Wang and N. Tang. Towards dependable data repairing with fixing
rules. In SIGMOD, pages 457–468, 2014.

[38] Y. Wang and Y. He. Synthesizing mapping relationships using table
corpus. In SIGMOD, pages 1117–1132, 2017.

[39] E. Zgraggen, A. Galakatos, and et al. How progressive visualizations
affect exploratory analysis. IEEE Trans. Vis. Comput. Graph., 2017.

[40] E. Zhu, Y. He, and S. Chaudhuri. Auto-join: Joining tables by leveraging
transformations. PVLDB, 10(10):1034–1045, 2017.

