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ABSTRACT
Solving business problems increasingly requires going be-
yond the limits of a single data processing platform (plat-
form for short), such as Hadoop or a DBMS. As a result,
organizations typically perform tedious and costly tasks to
juggle their code and data across different platforms. Ad-
dressing this pain and achieving automatic cross-platform
data processing is quite challenging: finding the most effi-
cient platform for a given task requires quite good exper-
tise for all the available platforms. We present Rheem, a
general-purpose cross-platform data processing system that
decouples applications from the underlying platforms. It
not only determines the best platform to run an incoming
task, but also splits the task into subtasks and assigns each
subtask to a specific platform to minimize the overall cost
(e.g., runtime or monetary cost). It features (i) a robust
interface to easily compose data analytic tasks; (ii) a novel
cost-based optimizer able to find the most efficient platform
in almost all cases; and (iii) an executor to efficiently or-
chestrate tasks over different platforms. As a result, it al-
lows users to focus on the business logic of their applications
rather than on the mechanics of how to compose and execute
them. Using different real-world applications with Rheem,
we demonstrate how cross-platform data processing can ac-
celerate performance by more than one order of magnitude
compared to single-platform data processing.
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1. THE DARK SIDE OF BIG DATA
The pursuit of comprehensive, efficient, and scalable

data analytics as well as the one-size-does-not-fit-all dictum
have given rise to a plethora of data processing platforms
(platforms for short). These specialized platforms include
DBMS, NoSQL, and MapReduce-like platforms. In fact,
just under the umbrella of NoSQL, there are reportedly over
200 different platforms1. Each excels in specific aspects al-
lowing applications to achieve high performance and scala-
bility. For example, while Spark supports Select queries,
Postgres can execute them much faster by using indices.
However, Postgres is not as good as Spark for general pur-
pose batch processing where parallel full scans are the key
performance factor. Several studies have shown this kind of
performance differences [20,34,40,53,61].

Diversity as Common Ground. Moreover, today’s
data analytics is moving beyond the limits of a single plat-
form. For example: (i) IBM reported that North York hos-
pital needs to process 50 diverse datasets, which run on a
dozen different platforms [38]; (ii) Airlines need to analyze
large datasets, which are produced by different departments,
are of different data formats, and reside on multiple data
sources, to produce global reports for decision makers [9];
(iii) Oil & Gas companies need to process large amounts of
diverse data spanning various platforms [19,36]; (iv) Several
data warehouse applications require data to be moved from
a MapReduce-like system into a DBMS for further analy-
sis [28, 56]; (v) Business intelligence typically requires an
analytic pipeline composed of different platforms [58]; and
(vi) Using multiple platforms for machine learning improves
performance significantly [20,40].

Status Quo. To cope with these new requirements, de-
velopers (or data scientists) have to write ad-hoc programs
and scripts to integrate different platforms. This is not only
a tedious, time-consuming, and costly task, but it also re-
quires knowledge of the intricacies of the different platforms
to achieve high efficiency and scalability. Some systems
have appeared with the goal of facilitating platform integra-
tion [2, 4, 10, 12]. Nonetheless, they all require a good deal
of expertise from developers, who still need to decide which
processing platforms to use for each task at hand. Recent
research has taken steps towards transparent cross-platform
execution [15, 29, 34, 46, 58, 60], but lacks several important
aspects. Usually these efforts do not automatically map

1http://db-engines.com
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Figure 1: Rheem in the data analytics stack.

tasks to platforms. Additionally, they do not consider com-
plex data movement (i.e., with data transformations) among
platforms [29, 34]. Finally, most of the research focuses on
specific applications [15,46,58].

Cross-Platform Data Processing. There is a clear need
for a systematic approach to enable efficient cross-platform
data processing, i.e., use of multiple data processing plat-
forms. The Holy Grail would be to replicate the success
of DBMSs for cross-platform data processing. Users simply
send their tasks (or queries) expressing the logic of their ap-
plications, and the cross-platform system decides on which
platform(s) to execute each task with the goal of minimizing
its cost (e.g., runtime or monetary cost).

Challenges. Building such a cross-platform system is chal-
lenging on numerous fronts: (i) a cross-platform system not
only has to effectively find all the suitable platforms for a
given task, but also has to choose the most efficient one;
(ii) cross-platform settings are characterized by high uncer-
tainty as different platforms are autonomous and thus one
has little control over them; (iii) the performance gains of
using multiple platforms should compensate the added cost
of moving data across platforms; (iv) it is crucial to achieve
inter-platform parallelism to prevent slow platforms from
dominating execution time; (v) the system should be exten-
sible to new platforms and application requirements; and
(vi) the system must be easy to use so that the development
of data analytic tasks can be sped up.

Contributions. We present Rheem2, the first general-
purpose cross-platform system to tackle all of the above
challenges. The goal of Rheem is to enable applications and
users to run data analytic tasks efficiently on one or more
data processing platforms. To do so, it decouples applica-
tions from platforms as shown in Figure 1. Applications
issue their tasks to Rheem, which in turn decides where
to execute them. As of today, Rheem supports a variety
of platforms: Spark, Flink, JavaStreams, Postgres, GraphX,
GraphChi, and Giraph. We are currently testing Rheem in
a large international airline company and in a biomedical
research institute. In the former case, we aim at seamlessly
integrating all data analytic activity governing an aircraft;
In the latter case, we aim at reducing the effort scientists
need for building data analytic pipelines while at the same
time speeding up the running time. Note that several papers
show different aspects of Rheem: the vision behind it [17];
its optimizer [43]; its inequality join algorithm [42]; and a
couple of its applications [40, 41]. A couple of demo papers
showcase the benefits of Rheem [16] and its interface [47].
This paper aims at presenting the complete design of Rheem
and how all its pieces work together.

In summary, we make the following contributions:

(1) We identify four situations in which applications require

2Rheem is open source under the Apache Software Li-
cense 2.0 and can be found at https://github.com/
rheem-ecosystem/rheem.

support for cross-platform data processing. For each case,
we use a real application to show experimentally the benefits
of cross-platform data processing using Rheem. (Section 2)

(2) We present the data and processing model of Rheem
and show how it shields users from the intricacies of the un-
derlying platforms. Rheem provides flexible operator map-
pings that allow for better exploiting the underlying plat-
forms. Also, its extensible design allows users to add new
platforms and operators with very little effort. (Section 3)

(3) We discuss the key aspects that make Rheem novel. It
is the first to: (i) use a cost-based cross-platform optimizer
that considers data movement costs; (ii) offer a progressive
optimization mechanism to deal with inconsistent cardinal-
ity estimates; and (iii) provide a learning tool that alleviates
the burden of tuning the cost model. (Section 4)

(4) We present the Rheem interfaces whereby users can
easily code and run any data analytic task on any data pro-
cessing platform. In particular, we present a data-flow lan-
guage (RheemLatin) and a visual integrated development
environment (Rheem Studio). (Section 5)

(5) We present additional experiments showing that
Rheem achieves its goals in terms of feasibility and perfor-
mance improvements. Rheem allows applications to run up
to more than one order of magnitude faster than baselines
and common practices. (Section 6)

(6) We summarize the lessons learned from our journey and
show how these impacted the applications we built on top of
Rheem. We also discuss Rheem’s limitations. (Section 7)

Moreover, we discuss related work in Section 8 and con-
clude with some open problems in Section 9.

2. CROSS-PLATFORM PROCESSING
We identified four situations in which an application re-

quires support for cross-platform data processing [39].

(1) Platform-independence. Applications run an entire task
on a single platform but may require switching platforms
for different input datasets or tasks usually with the goal of
achieving better performance.

(2) Opportunistic cross-platform. Applications might also
benefit performance-wise from using multiple platforms to
run one single task.

(3) Mandatory cross-platform. Applications may require
multiple platforms because the platform where the input
data resides, e.g., PostgreSQL, cannot perform the incoming
task, e.g., a machine learning task. Thus, data should be
moved from the platform it resides to another platform.

(4) Polystore. Applications may require multiple platforms
because the input data is stored on multiple data stores.

In contrast to existing systems [29, 30, 34, 58, 62], Rheem
helps users in all above cases. The design of our system has
been mainly driven by four applications: a data cleaning ap-
plication, BigDansing [41]; a machine learning application,
ML4all [40]; a database application, xDB; and an end-to-
end data discovery and preparation application, Data Civ-
ilizer [32]. We use these applications to showcase the ben-
efits of performing cross-platform data processing, instead
of single-platform data processing, in terms of both perfor-
mance and ease of use. For clarity, the setup details of our
below experiments are in Section 6, where we present addi-
tional experiments demonstrating the benefits of Rheem.

https://github.com/rheem-ecosystem/rheem
https://github.com/rheem-ecosystem/rheem
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Figure 2: Benefits of the cross-platform data processing approach (using Rheem).

2.1 Platform Independence
Applications are usually tied to a specific platform. This

may not constitute the ideal case for two reasons. First, as
more efficient platforms become available, developers need
to re-implement existing applications on top of these new
platforms. For example, Spark SQL [14] and MLlib [13]
are the Spark counterparts of Hive [6] and Mahout [7]. Mi-
grating an application from one platform to another is a
time-consuming and costly task and hence it is not always
a viable choice. Second, for different inputs of a specific
task, a different platform may be the most efficient one, so
the best platform cannot be determined statically. For in-
stance, running a specific task on a big data platform for
very large datasets is often a good choice, while single-node
platforms with only little overhead costs are often a better
choice for small datasets [20]. Thus, enabling applications
to seamlessly switch from one platform to another according
to the input dataset and task is important. Rheem dynam-
ically determines the best platform to run an incoming task.

Benefits. We use BigDansing [41] to demonstrate the ben-
efits of providing platform independence. Users specify a
data cleaning task with five logical operators: Scope (iden-
tifies relevant data), Block (defines the group of data among
which an error may occur), Iterate (enumerates candidate er-
rors), Detect (determines whether a candidate error is indeed
an error), and GenFix (generates a set of possible repairs).
Rheem maps these operators to Rheem operators to decide
the best underlying platform. We show the power of sup-
porting cross-platform data processing by running an error
detection task on a widely used Tax dataset [31]. The task is
based on the denial constraint ∀t1, t2,¬(t1.Salary > t2.Salary
∧t1.Tax < t2.Tax), which states that there is an inconsis-
tency between two tuples representing two different persons
if one earns a higher salary but pays a lower tax. We consid-
ered NADEEF [25], a data cleaning tool, and SparkSQL, a
general-purpose framework, as baselines and forced Rheem
to use either Spark or JavaStreams per run.

Figure 2(a) shows the results (the red cross means we
stopped the execution after 40 hrs). Overall, we observe that
Rheem (DC@Rheem) allows data cleaning tasks to scale up
to large datasets and be at least three orders of magnitude
faster than baselines. One order of magnitude gain comes
from the ability of Rheem to automatically switch plat-
forms. Rheem used JavaStreams for small datasets speed-
ing up the data cleaning task by avoiding Spark’s overhead,
while it used Spark for the largest datasets. Furthermore, in
contrast to SparkSQL that cannot process inequality joins ef-
ficiently, Rheem’s extensibility allowed us to plug in a more
efficient inequality-join algorithm [42], thereby further im-

proving over these baselines. In a nutshell, BigDansing ben-
efited from Rheem because of its ability to effectively switch
platforms and because of its extensibility to easily plug op-
timized algorithms. We demonstrated how BigDansing ben-
efits from Rheem in [16].

2.2 Opportunistic Cross-Platform
While some applications can be executed on a single plat-

form, there are cases where their performance would be sped
up by using multiple platforms. For instance, users can run
a gradient descent algorithm, such as SGD, on top of Spark
relatively fast. Still, we recently showed that mixing it with
JavaStreams significantly improves performance [40]. In fact,
opportunistic cross-platform processing can be seen as the
execution counter-part of polyglot persistence [55], where dif-
ferent types of databases are combined to leverage their in-
dividual strengths. However, developing such cross-platform
applications is difficult: developers must know all the cases
where it is beneficial to use multiple platforms and how ex-
actly to use them. These opportunities are often very hard
(if not impossible) to spot. Even worse, like in the plat-
form independence case, they usually cannot be determined
a priori. Rheem finds and exploits opportunities of using
multiple processing platforms.

Benefits. Let us now take our machine learning applica-
tion, ML4all [40], to showcase the benefits of using multiple
platforms to perform one single task. ML4all abstracts three
fundamental phases (namely preparation, processing, and
convergence) found in most machine learning tasks via seven
logical operators which are mapped to Rheem operators.
In the preparation phase, the dataset is prepared appropri-
ately along with the necessary initialization of the algorithm
(Transform and Stage operators). The processing phase
computes the gradient and updates the current estimate
of the solution (Sample, Compute, and Update operators)
while the convergence phase repeats the processing phase
based on the number of iterations or other criteria (Loop
and Converge operators). We demonstrate the benefits of
using Rheem with a classification task over three benchmark
datasets, using Stochastic Gradient Descent (SGD).

Figure 2(b) shows the results. We observe that, even
though all systems use the same SGD algorithm, Rheem
allows this algorithm to run significantly faster than com-
peting Spark-based systems. This is because of two main
reasons. First, this comes from opportunistically running
the Compute, Update, Converge, and Loop operators on
JavaStreams, thereby avoiding some of the Spark’s overhead.
Rheem runs the rest of the operators on Spark. MLlib and
SystemML do not avoid such overhead by purely using Spark
for the entire algorithm. Second, ML4all leverages Rheem’s



extensibility to plug an efficient sampling operator, result-
ing in significant speedups. We demonstrated how ML4all
further benefits from Rheem in [16].

2.3 Mandatory Cross-Platform
There are cases where an application needs to go beyond

the functionalities offered by the platform on which the data
is stored. For instance, a dataset is stored on a relational
database and a user needs to perform a clustering task on
particular attributes. Doing so inside the relational database
might simply be disastrous in terms of performance. Thus,
the user needs to move the projected data out of the rela-
tional database and, for example, put it on HDFS in order
to use Apache Flink [3], which is known to be efficient for
iterative tasks. A similar situation occurs in complex data
analytics applications with disparate subtasks. As an exam-
ple, an application that extracts a graph from a text corpus
to perform subsequent graph analytics may require using
both a text and a graph analytics system. The required in-
tegration of platforms is tedious, repetitive, and particularly
error-prone. Nowadays, developers write ad-hoc programs
to move the data around and integrate different platforms.
Rheem not only selects the right platforms for each task but
also moves the data if necessary at execution time.

Benefits. We use xDB3, a system on top of Rheem with
database functionalities, to demonstrate the benefits of per-
forming cross-platform data processing for the above situ-
ation. It provides a declarative language to compose data
analytic tasks, while its optimizer produces a plan to be ex-
ecuted in Rheem. We evaluate the benefits of Rheem with
the cross-community pagerank4 task, which is not only hard
to express in SQL but also inefficient to run on a DBMS.
Thus, it is important to move the computation to another
platform. In this experiment, the input datasets are on Post-
gres and Rheem moves the data into Spark.

Figure 2(c) shows the results. As a baseline, we consider
the ideal case where the data is on HDFS and Rheem sim-
ply uses either JavaStreams or Spark to run the tasks. We
observe that Rheem allows xDB (xDB@Rheem) to achieve
similar performance with the ideal case in all the situations,
while fully automating the process. This is a remarkable
result as Rheem needs to move data out of Postgres to per-
form the tasks, in contrast to the ideal case.

2.4 Polystore
In many organizations, data is collected in different for-

mats and on heterogeneous storage platforms (data lakes).
Typically, a data lake comprises various DBMSs, document
stores, key-value stores, graph databases, and pure file sys-
tems. As most of these stores are tightly coupled with an
execution engine, e.g., a DBMS, it is crucial to be able to run
analytics over multiple platforms. For this, users perform
not only tedious, time-intensive, and costly data migration,
but also complex integration tasks for analyzing the data.
Rheem shields the users from all these tedious tasks and al-
lows them to instead focus on the logic of their applications.

Benefits. A clear example that shows the benefits of cross-
platform data processing in a polystore case is the Data

3https://github.com/rheem-ecosystem/xdb
4This task basically intersects two community-DBpedia
datasets and runs pagerank on the resulting dataset.

Civilizer system [32]. Data Civilizer is a big data manage-
ment system for data discovery, extraction, and cleaning
from data lakes in large enterprises [27]. It constructs a
graph that expresses relationships among data existing in
heterogeneous data sources. Data Civilizer uses Rheem to
perform complex tasks over information that spans multiple
data storages. We measure the efficiency of Rheem for these
polystore tasks with TPC-H query 5. In this experiment, we
assume that the data is stored in HDFS (LINEITEM and
ORDERS), Postgres (CUSTOMER, REGION, and SUP-
PLIER), and a local file system (NATION). Thus, this task
performs join, groupby, and orderby operations across three
different platforms. In this scenario, the common practice is
to move the data into the database to enact the queries in-
side the database [28,56] or move the data entirely to HDFS
and use Spark. We consider these two practices as the base-
line. For a fairer comparison, we also set the “parallel query”
and “effective IO concurrency” features of Postgres to 4.

Figure 2(d) shows the results. Rheem (DataCiv@Rheem)
is significantly faster, namely up to 5×, than the current
practice. We observed that loading data into Postgres is
already approximately 3× slower than it takes Rheem to
complete the entire task. Even when discarding data mi-
gration times, Rheem can still perform quite similarly to
the parallel version of Postgres. The pure execution time in
Postgres for scale factor 100 amounts to 1, 541 sec compared
to 1, 608 sec for Rheem, which exploits Spark for data paral-
lelism. We also observe that Rheem has negligible overhead
over the case where the developer writes ad-hoc scripts to
move the data to HDFS for running the task on Spark. In
particular, Rheem is twice faster than Spark for scale factor
1 because it moves less data from Postgres to Spark.

3. RHEEM MODEL
First of all, let us emphasize that Rheem is not yet

another data processing platform. On the contrary, it is
designed to work between applications and platforms (as
shown in Figure 1), helping applications to choose the right
platform(s) for a given task. Rheem is the first general-
purpose cross-platform system that shields users from the
intricacies of the underlying platforms and let them focus
only on the logic of their applications. We define the Rheem
data and processing models in the following.

Data Quanta. The Rheem data model relies on
data quanta, the smallest processing units from the input
datasets. A data quantum can express a large spectrum of
data formats, such as database tuples, edges in a graph, or
the full content of a document. This flexibility allows ap-
plications and users to define a data quantum at any gran-
ularity level, e.g., at the attribute level rather than at the
tuple level for a relational database. This fine-grained data
model allows Rheem to work in a highly parallel fashion, if
necessary, to achieve better scalability and performance.

Rheem Plan. Rheem accepts as input a Rheem plan:
a directed data flow graph whose vertices are Rheem op-
erators and whose edges represent data flows among the
operators. A Rheem operator is a platform agnostic data
transformation over its input data quanta, e.g., a Map oper-
ator transforms an individual data quantum while a Reduce
operator aggregates input data quanta into a single output
data quantum. Only Loop operators accept feedback edges,
which allows iterative data flows to be expressed. Users

https://github.com/rheem-ecosystem/xdb
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or applications can refine the behavior of operators with a
UDF. Optionally, applications can also attach the selectiv-
ities of the operators through a UDF. Rheem comes with
default selectivity values in case they are not provided. A
Rheem plan must have at least one source operator, i.e., an
operator reading or producing input data quanta, and one
sink operator per branch, i.e., an operator retrieving or stor-
ing the result. Intuitively, data quanta are flowing from
source to sink operators, thereby being manipulated by all
inner operators. As our processing model is based on prim-
itive operators, Rheem plans are highly expressive. This is
in contrast to other systems that accept either declarative
queries [34,62] or coarse-granular operators [29].

Example 1. Figure 3(a) shows a Rheem plan for the
stochastic gradient descent algorithm (SGD). Initially,
the dataset containing the data points is read via a
TextFileSource operator and parsed using a Map operator
while the initial weights are read via a Collection source op-
erator. After the RepeatLoop operator, the weights are fed to
the Sample operator, where a set of input data points is sam-
pled. Next, Map(compute) computes the gradient for each
sampled data point. Note that as Map(compute) requires all
weights to compute the gradient, the weights are broadcasted
at each iteration to the Sample operator (denoted by the dot-
ted line). Then, the Reduce operator computes the sum and
count of all gradients. The next Map operator uses these
sum and count values to update the weights. This process is
repeated until the loop condition is satisfied. The resulting
weights are output in a collection sink.

Execution Plan. Given a Rheem plan as input, Rheem
uses a cost-based optimization approach to produce an exe-
cution plan by selecting one or more platforms to efficiently
execute the input plan. The cost can be any user-specified
cost, e.g., runtime or monetary cost. The resulting exe-
cution plan is again a data flow graph, where the vertices
are now execution operators. An execution operator imple-
ments one or more Rheem operators with platform-specific
code. For instance, the Cache Spark execution operator in
Rheem implements the Cache Rheem operator by calling
the RDD.cache() operation of Spark. An execution plan
may also comprise additional execution operators for data
movement (e.g., data broadcasting) or data reuse (e.g., data
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Figure 4: Operator mappings.

caching). Additionally, each execution operator has at-
tached a UDF where its cost is specified. Rheem learns
such costs from execution logs using machine learning. We
discuss more details in Section 4.5.

Example 2. Figure 3(b) shows the SGD execution plan
produced by Rheem when Spark and JavaStreams are the
only available platforms. This execution plan exploits high
parallelism for the large dataset of input data points and
avoids the extra overhead incurred by big data processing
platforms for the smaller collection of weights. Note that
the execution plan also contains three execution operators
for transferring (Broadcast, Collect) and making data quanta
reusable across the platforms (Cache).

Operator Mappings. To produce an execution plan,
Rheem relies on flexible m-to-n mappings to map Rheem
operators to execution operators. Supporting m-to-n map-
pings is particularly useful as it allows to map whole sub-
plans of Rheem operators to subplans of execution opera-
tors. Additionally, a subplan of Rheem (or execution) op-
erators can map to another subplan of Rheem (respectively
execution) operators. As a result, we can handle different
abstraction levels among platforms, e.g., to emulate Rheem
operators that are not natively supported by a specific plat-
form. This is not possible in other systems, such as [29].

Example 3. Figure 4 illustrates the mapping for the
Reduce Rheem operator. This operator directly maps to the
Reduce Spark execution operator via a 1-to-1 mapping (map-
ping (a)). However, it does not have a direct mapping to a
JavaStreams execution operator. Instead, it maps to a set of
Rheem operators (GroupBy and Map) via a 1-to-n mapping
(mapping (b)) and vice-versa (n-to-1 mapping (c)). In turn,
this set of Rheem operators maps to a set of JavaStreams
execution operators (GroupBy and Map) via an m-to-n map-
ping (mapping (d)).

Data movement. Data flows among operators via com-
munication channels (or simply channels). A channel can be
any internal data structure within a data processing plat-
form (e.g., RDD for Spark or Collection for JavaStreams),
or simply a file. In the case of two execution operators of
different platforms connected within a plan, it is necessary
to convert the output channel of one to the input chan-
nel of the other (e.g., from RDD to Collection). These
conversions are handled by conversion operators, which in
fact are regular execution operators. For example, we can
convert a Spark RDD channel to a JavaStreams Collection
channel using the SparkCollect operator (see Figure 3(b)).
We represent the space of data movement paths across all
platforms as a channel conversion graph, where the chan-
nels form its vertices and the conversion operators form its
directed edges connecting one source channel to a target
channel. The channel conversion graph size depends on the
number of available platforms and their available channels.



We expect to have at least one channel (vertex) per plat-
form. Our optimizer is responsible for selecting the optimal
path to connect two (or more) channels (see Section 4.1 for
more details). Unlike other approaches [29, 34], developers
do not need to provide conversion operators for all combi-
nations of source and target channels. It is therefore much
easier for developers to add new platforms to Rheem.

Extensibility. We have designed Rheem to address exten-
sibility as a first-class citizen rather than as “nice-to-have”
feature. Users add new Rheem and execution operators by
merely extending or implementing few abstract classes/in-
terfaces. Rheem provides template classes to facilitate the
development for different operator types. Users also add op-
erator mappings by simply implementing an interface and
specifying a graph pattern that matches the Rheem opera-
tor. As a result, users can plug a new platform by providing:
(i) its execution operators and their mappings and (ii) the
communication channels that are specific to the new plat-
form (e.g., RDDChannel for Spark) with at least one conver-
sion operator from the new channel to an existing one and
vice versa. Very often these operators are simply source and
sink operators that the developer needs to implement any-
way (e.g., SparkCollect). For instance, when adding a new
platform, e.g., an array database, it is sufficient to provide
one conversion operator to transform the channel of the new
platform to the channel of one of the supported platforms,
e.g., a relational database. Then, using the channel conver-
sion graph the optimizer can find a path to convert the new
channel to any channel of the supported platforms, e.g., a
graph database. Certainly, providing a new conversion op-
erator may improve performance but it is not a necessary
condition for the system to work. Users neither have to mod-
ify the Rheem code nor integrate the newly added platform
with all the already supported platforms. Thus, Rheem re-
duces the “effort complexity” of adding n new platforms to
a cross-platform system with already m registered platforms
from quadratic O((n+m)2) to linear O(n).

4. RHEEM INTERNALS
In this section, we give the details of the Rheem internals.

Figure 5 depicts the Rheem ecosystem, i.e., the Rheem
core architecture together with three main applications built
on top of it. Users provide a Rheem plan to the system
(Step (1) in Figure 5), using Java, Scala, Python, REST,
RheemLatin, or Rheem Studio API (yellow boxes in Fig-
ure 5). The cross-platform optimizer compiles the Rheem
plan into an execution plan (Step (2)), which specifies the
processing platforms to use; the executor schedules the re-
sulting execution plan on the selected platforms (Step (3));
the monitor collects statistics and checks the health of the
execution (Step (4)); the progressive optimizer re-optimizes
the plan if the cardinality estimates turn out to be inaccu-
rate (Step (5)); and the cost learner helps users in building
the cost model offline. In the following, we explain each
of these components using the pseudocode in Algorithm 1,
which shows the entire data processing pipeline.

4.1 Optimizer
The cross-platform optimizer (Line 1 in Algorithm 1) is

at the heart of Rheem. It is responsible for selecting the
most efficient platform for executing each single operator
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Figure 5: Rheem’s ecosystem and architecture.

Algorithm 1: Cross-platform data processing

Input: Rheem plan rheemPlan

1 exPlan← Optimize(rheemPlan)
2 monitor← StartMonitor(exPlan)
3 finished← ExecuteUntilCheckpoint(exPlan,monitor)
4 while ¬finished do
5 updated← UpdateEstimates(exPlan,monitor)
6 if updated then exPlan← ReOptimize(exPlan)
7 finished← ResumeExecution(exPlan,monitor)

in a Rheem plan. That is, it does not perform any log-
ical or physical optimization (such as operator reordering,
or choosing the operator implementation by considering in-
teresting orders or partitioning). This kind of optimization
takes place at the application or platform level. A discussion
about these levels of optimization can be found in [17].

Although a rule-based optimizer could determine how to
split and execute a plan, e.g., based on its processing pat-
terns [34, 62], such an approach is neither practical nor ef-
fective. First, by setting rules, one may make only very
simplistic decisions based on the different cardinality and
complexity of each operator. Second, the cost of a task
on any given platform depends on many input parameters,
which hampers a rule-based optimizer’s effectiveness as it
oversimplifies the problem. Third, as new platforms and
applications emerge, maintaining a rule-based optimizer be-
comes cumbersome as the number of rules grows rapidly [62].

We thus pursue a more flexible cost-based approach: we
split a given Rheem plan into subplans and determine the
best platform for each subplan so that the total plan cost
is minimized. Below, we give the four main phases of the
optimizer, namely plan inflation, cost estimates annotation,
data movement planning, and plan enumeration. Technical
details about these can be found in [43].

Plan Inflation. At first, the optimizer passes the Rheem
plan through an inflation phase. It inflates each Rheem op-
erator of the input plan by applying a set of operator map-
pings as described in Section 3. Recall that these mappings
determine how each of the platform-agnostic Rheem opera-
tors can be implemented on various platforms with execution
operators. Note that the inflation process does not simply
replace a Rheem operator with an execution operator via
these mappings but it keeps both the Rheem operator and
all mapped execution operators. For instance, the gray box
in Figure 6 shows the inflated Reduce operator from the SGD
plan of Figure 3(a) after applying the mappings of Figure 4.
This approach allows the optimizer to later enumerate all
possible execution plans without depending on the order in
which the mappings are applied. In fact, an inflated plan is
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a highly compact representation of all execution plans.

Cardinality and Cost Estimates. Next, the optimizer
needs to annotate the inflated plan with the cost of each
execution operator. Rheem uses a modular and fully UDF-
based cost model and represents cost estimates as inter-
vals with a confidence value (see pink box in Figure 6).
Having interval-based estimates allows it to perform on-
the-fly re-optimization as we will see in Section 4.4. The
cost (e.g., wallclock time or monetary cost) of an execution
operator depends on (i) its resource usage (CPU, memory,
disk, and network) and (ii) the unit costs of each resource
(e.g., how much one CPU cycle costs). The unit costs de-
pend on hardware characteristics (such as number of nodes
and CPU cores) which are encoded in a configuration file for
each platform. The resource usage of each execution opera-
tor o for metric m is estimated by a dedicated cost function
rmo , which depends on its input cardinality cin. Given that
the output cardinality of one operator is equal to the in-
put cardinality of its subsequent operators, Rheem uses the
following approach for estimating the output cardinality of
each operator (purple box in Figure 6). It first computes the
output cardinalities of the source operators via sampling. It
then traverses the inflated plan in a bottom-up fashion to
estimate the output cardinality of all subsequent operators
in the inflated plan. For this, each Rheem operator is asso-
ciated with a cardinality estimator function, which considers
its properties (e.g., selectivity and number of iterations) and
input cardinalities. Note that applications (and developers)
can input the selectivity of the operators in their Rheem
plans via a UDF. There are ways [37, 54] that can be used
to help developers to provide the selectivity for their UDFs,
but this is part of our future work. Finally, the parameters
of all cost functions rmo can be learned offline using Rheem’s
cost learner module (see Section 4.5 for details). Note that
as a result of having a modular and fully UDF-based cost
model, one can easily define her own objective criteria for
optimizing Rheem plans. Additionally, the separation of
the cost functions from the cost model parameters allows
the optimizer to be portable across different deployments.

Data Movement Planning. Given an inflated plan with
its estimates, the optimizer also needs to estimate how to
best move data quanta among execution operators of dif-
ferent platforms and what the cost of such data movement
is. It is crucial to consider data movement at optimization
time because of several reasons: (i) its cost can be very
high; (ii) its cost must be minimized to be able to scale to
several platforms; and (iii) it typically involves operations
that go beyond a simple byte copy (caching, data trans-
formations, 1-to-n communication, among others). Exist-
ing systems simply fall short of addressing these real-world

data movement problems. As already mentioned, we take a
graph-based approach and represent the space of data move-
ment paths across platforms as a channel conversion graph.
This allows us to model the problem of finding the most
efficient communication path among execution operators as
a graph problem, which we proved in [43] that is NP-hard
and solved it with a novel algorithm that relies on kernel-
ization. Our data movement approach can discover all ways
to connect execution operators of different platforms via a
sequence of communication channels, if one exists. After the
best data movement strategy is found, its cost is attached
to the inflated plan.

Plan Enumeration. At last, the optimizer determines the
optimal way of executing an input Rheem plan based on the
cost estimates of its inflated plan. Doing so is very challeng-
ing because of the exponential size of the search space. A
plan with n operators, each having k execution operators,
leads to kn possible plans. This number quickly becomes in-
tractable for a growing n. For instance, a cross-community
PageRank plan which consists of n = 27 Rheem operators,
each with k = 5, yields 2, 149, 056, 512 possible execution
plans. Furthermore, when enumerating all possible execu-
tion plans, the optimizer must consider the previously com-
puted data movement costs as well as the start-up costs of
data processing platforms. Thus, instead of taking a simple
greedy approach that neglects data movement and platform
start-up costs, we follow a principled approach: we use an
enumeration algebra and propose a lossless pruning tech-
nique. Our enumeration algebra has two manipulation op-
erators, namely Join, for building a complete execution plan
by connecting smaller subplans, and Prune (σ), for scraping
inferior subplans from an enumeration according to a prun-
ing technique. Our pruning technique is guaranteed to not
prune a subplan that is part of the optimal execution plan
by keeping only the cheapest subplan from a set of execu-
tion subplans having the same initial and ending execution
operators. As a result, the optimizer can output the optimal
execution plan without an exhaustive enumeration.

4.2 Executor
The executor receives an execution plan from the opti-

mizer to run it on the selected data processing platforms
(Lines 3 and 7 in Algorithm 1). For example, the optimizer
selected the Spark and JavaStreams platforms for our SGD
example in Figure 3(a). Overall, the executor follows well-
known approaches to parallelize a task over multiple com-
pute nodes, with only few differences in the way it divides
an execution plan. In particular, it divides an execution
plan into stages. A stage is a subplan where (i) all its exe-
cution operators are from the same platform; (ii) at the end
of its execution, the platforms need to give back the execu-
tion control to the executor; and (iii) its terminal operators
materialize their output data quanta in a data structure,
instead of being pipelined into the next operator.

In our SGD example of Figure 3(b), the executor divides
the execution plan into six stages as illustrated in Figure 7.
Note that Stage3 contains only the RepeatLoop operator as
the executor must have the execution control to evaluate
the loop condition. This is why the executor also separates
Stage1 from Stage5. Then, it dispatches the stages to the
relevant platform drivers, which in turn submit the stages as
a job to the underlying platforms. Stages are connected by
data flow dependencies so that stages with no dependencies
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(e.g., Stage1 and Stage2) are dispatched first in parallel and
any other stage is dispatched once its input dependencies are
satisfied (e.g., Stage3 after Stage2). Lastly, as data explo-
ration is a key piece in the field of data science, the executor
optionally allows applications to run in an exploratory mode
where they can pause and resume the execution of a task at
any point. This is done by injecting sniffers into execution
plans and attaching auxiliary execution plans (see Figure 7).

4.3 Monitor
Recall that the cross-platform optimizer operates in a set-

ting that is characterized by high uncertainty. For instance,
the semantics of UDFs and data distributions are usually
unknown because of the little control over the underlying
platforms. This uncertainty can cause poor cardinality and
cost estimates and hence can negatively impact the effective-
ness of the optimizer [45]. To compensate this uncertainty,
Rheem registers the execution of a plan with the monitor
(Line 2 in Algorithm 1). The monitor collects light-weight
execution statistics for the given plan, such as data cardi-
nalities and operator execution times. It is also aware of
lazy execution strategies used by the underlying platforms
and assigns measured execution time correctly to operators.
Rheem uses these statistics to improve its cost model and
re-optimize ongoing execution plans in case of poor cardi-
nality estimates. Additionally, the monitor is responsible for
checking the health of the execution. For instance, if it finds
a large mismatch between the real output cardinalities and
the estimated ones, it pauses the execution plan and sends
it to the progressive optimizer.

4.4 Progressive Optimizer
To mitigate the effects of bad cardinality estimates,

Rheem employs a progressive query optimization approach.
The key principle is to re-optimize the plan whenever the
cardinalities observed by the monitor greatly mismatch the
estimated ones [48]. Applying progressive query optimiza-
tion in our setting comes with two main challenges. First,
we have only limited control over the underlying platforms,
which makes plan instrumentation and halting executions
difficult. Second, re-optimizing an ongoing execution plan
must efficiently consider the results already produced.

We tackle these challenges by using optimization check-
points. An optimization checkpoint tells the executor
to pause the plan execution in order to consider a re-
optimization of the plan beyond the checkpoint. The pro-

gressive optimizer inserts optimization checkpoints into exe-
cution plans wherever (i) cardinality estimates are uncertain
(having a wide interval or low confidence) or (ii) the data
is at rest (e.g., a Java collection or a file). For instance,
the optimizer inserts an optimization checkpoint right after
Stage1 as the data is at rest because of the Cache operator
(see Figure 7). When the executor cannot dispatch a new
stage anymore without crossing an optimization checkpoint,
it pauses the execution and gives the control to the pro-
gressive optimizer. The latter gets the actual cardinalities
observed so far by the monitor and re-computes all cardi-
nalities from the current optimization checkpoint (Line 5 in
Algorithm 1). In case of a mismatch, it re-optimizes the
remaining of the plan (from the current optimization check-
point) using the new cardinalities (Line 6). It then gives the
new execution plan to the executor, which resumes the ex-
ecution from the current optimization checkpoint (Line 7).
Rheem can switch between execution and progressive opti-
mization any number of times at a negligible cost.

4.5 Cost Model Learner
Profiling operators in isolation might be unrealistic when-

ever platforms optimize execution across multiple operators,
e.g., by pipelining. Indeed, we found cost functions derived
from isolated benchmarking to be insufficiently accurate.
We thus take a different approach.

Learning the Cost Model. Recall that each execution
operator o is associated with a number of resource usage
functions (rmo , where m is CPU, memory, disk, or network).
For instance, the cost function to estimate the CPU cy-
cles required by the JavaFilter operator is rCPU

JavaFilter :=
cin×(α+β)+δ, where parameters α and β denote the num-
ber of required CPU cycles for each input data quantum in
the operator itself and in its UDF, and parameter δ describes
some fixed overhead for the operator start-up and schedul-
ing. We then multiply each of these resource usage functions
rmo with the time required per unit (e.g., msec/CPU cycle)
to get the time estimate tmo . The total cost estimate for
operator o is defined as: fo = tCPU

o + tmem
o + tdisko + tnet

o .
However, obtaining the parameters for each resource, such
as the α, β, δ values for CPU, is not trivial. We, thus, use
execution logs to learn these parameters in an offline fash-
ion and model the cost of individual execution operators as
a regression problem. Note that the execution logs contain
the runtimes of execution stages (i.e., pipelines of opera-
tors as defined in Section 4.2) and not of individual op-
erators. Let ({(o1, C1), (o2, C2), . . . (on, Cn)}, t) be an exe-
cution stage, with oi, 0 < i ≤ n, where oi are execution
operators, Ci are input and output true cardinalities, and
t is the measured execution time for the entire stage. Fur-
thermore, let fi(x, Ci) be the total cost function for execu-
tion operator oi with x being a vector with the parameters
of all resource usage functions (e.g., CPU cycles, disk I/O
per data quantum). We are interested in finding xmin =
arg minx loss

(
t,
∑n

i=1 fi(x, Ci)
)
. Specifically, we use a rel-

ative loss function defined as loss(t, t′) =
(
|t−t′|+s

t+s

)2
, where

t′ is the geometric mean of the lower and upper bounds of
the cost estimate produced by

∑
fi(x, Ci) and s is a regu-

larizer inspired by additive smoothing that tempers the loss
for small t. Note that we can easily generalize this optimiza-
tion problem to multiple execution stages: we minimize the
weighted arithmetic mean of the losses of multiple execu-



tion stages. In particular, we use as stage weights the sum
of the relative frequencies of the stages’ operators among
all stages, so as to deal with skewed workloads that contain
certain operators more often than others. Finally, we apply
a genetic algorithm [50] to find xmin. In contrast to other
optimization algorithms, genetic algorithms impose only few
restrictions on the loss function to be minimized. Hence, our
cost learner can deal with arbitrary cost functions. Apply-
ing this technique allows us to calibrate the cost functions
with only little additional effort.

Logs Generation. Clearly, the more execution logs are
available, the better Rheem can tune the cost model. Thus,
Rheem comes with a log generator. It first creates a set
of Rheem plans by composing all possible combinations
of Rheem operators forming a particular topology. We
found that most data analytic tasks in practice follow three
different topologies: pipeline (e.g., batch tasks), iterative
(e.g., ML tasks), and merge (e.g., SPJA tasks). It then gen-
erates all possible executions plans for the previously created
set of Rheem plans. Next, it creates different configurations
for each execution plan, i.e., it varies the UDF complexity,
output cardinalities, input dataset sizes, and data types.
Once it has generated all possible plans with different con-
figurations, it executes them and logs their runtime.

5. BUILDING A RHEEM APPLICATION
Rheem provides a set of native APIs for developers to

build their applications. These include Java, Scala, Python,
and REST. Examples of using these APIs can be found in
the Rheem repository5. The code developers have to write
is fully agnostic of the underlying platforms. Still, in case
the user wants to force Rheem to execute a given operator
on a specific platform, she can invoke the withTargetPlatform

method. Similarly, she can force the system to use a specific
execution operator via the customOperator method, which
further enables users to employ custom operators without
having to extend the API.

Although the native APIs are quite popular among de-
velopers, many users are not proficient using these APIs.
Thus, Rheem also provides two APIs that target non-expert
users: a data-flow language (RheemLatin) and a visual IDE
(Rheem Studio). The salient feature of all these APIs is that
they are all platform-agnostic. It is Rheem that figures out
on which platform to execute each of the operators.

RheemLatin. Rheem provides a data-flow language
(RheemLatin) for users to specify their tasks [47]. Our
goal is to provide ease-of-use to users without compromising
expressiveness. RheemLatin follows a procedural program-
ming style to naturally fit the pipeline paradigm of Rheem.
It draws its inspiration from PigLatin [51] and hence it
has PigLatin’s grammar and supports most PigLatin’s key-
words. In fact, one could see it as an extension of PigLatin
for cross-platform settings. For example, users can specify
the platform for any part of their queries. More importantly,
it provides a set of configuration files whereby users can add
new keywords to the language together with their mappings
to Rheem operators. As a result, users can easily adapt
RheemLatin for their applications. Listing 1 illustrates how
one can express our SGD example with RheemLatin.

5
https://github.com/rheem-ecosystem/rheem-benchmark

1 import ’/sgd/udfs. class ’ AS taggedPointCounter;
2 lines = load ’hdfs://myData.csv’;
3 points = map lines −> {taggedPointCounter.parsePoints(lines)};
4 weights = load taggedPointCounter.createWeights();
5 final weights = repeat 50 {
6 sample points = sample points −> {taggedPointCounter.getSample()}

with broadcast weights;
7 gradient = map sample points −>

{taggedPointCounter.computeGradient()};
8 gradient sum count = reduce gradient −> {gradient.sumcount()};
9 weights = map gradient sum −> {gradient sum count.average()} with

platform ’JavaStreams’;}
10 store final weights ’ hdfs://output/sgd’;

Listing 1: SGD task in RheemLatin.
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Figure 8: SGD task in the Rheem Studio.

Rheem Studio. Although the native APIs and Rheem-
Latin cover a large number of users, some might still be un-
familiar with programming and data-flow languages. To this
end, Rheem provides a visual IDE (Rheem Studio) where
users can compose their data analytic tasks in a drag and
drop fashion [47]. Figure 8 shows the Rheem Studio’s GUI.
The GUI is composed of four parts: a panel containing all
Rheem operators, the drawing surface, a console for writing
RheemLatin queries, and the output terminal. The right-
side of Figure 8 shows how operators are connected for an
SGD plan. The studio provides default implementations for
any of the Rheem operators, which enables users to run com-
mon data analytic tasks without writing code. Yet, expert
users can provide a UDF by double-clicking on any operator.

6. DON’T UNDERESTIMATE THE FORCE
We carried out several additional experiments to the ones

we presented earlier in Section 2. Our goal in these addi-
tional experiments is to further show the benefits of the
cross-platform data processing approach over the single-
platform data processing approach. Due to space limita-
tions, we focus on the platform-independence and oppor-
tunistic cross-platform cases. We also evaluate our progres-
sive optimization and data exploration techniques as well as
compare Rheem with Musketeer [34].

6.1 Experiments Setup
We ran all our experiments on a cluster of 10 machines.

Each node has one 2 GHz Quad Core Xeon processor, 32 GB
main memory, 500 GB SATA hard disks, a 1 Gigabit net-
work card and runs 64-bit platform Linux Ubuntu 14.04.05.
While we use Rheem for the cross-platform data process-
ing approach, we use the following commonly used data

https://github.com/rheem-ecosystem/rheem-benchmark
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Figure 9: (a)-(c) Platform independence: Rheem always selects the best data processing platform;
(d)-(f) Opportunistic cross-platform: Rheem improves performance by combining multiple platforms.

Table 1: Tasks and datasets.

Task Description Rheem
operators

Dataset

WordCount count distinct words 4 Wikipedia abstracts
(3GB)

SGD stochastic gradient descent 9 HIGGS (7.4GB)
CrocoPR cross-community pagerank 27 DBpedia pagelinks

(24GB)

processing platforms for the single-platform data process-
ing approach: Java’s Stream library (JavaStreams), Post-
greSQL 9.6.2 (Postgres), Spark 1.6.0 (Spark), Flink 1.3.2
(Flink), GraphX 1.6.0 (GraphX), Giraph 1.2.0 (Giraph), a
Java graph library (JGraph), and HDFS 2.6.0 to store files.
We used all these platforms with their default settings and
configured the maximum RAM of each platform to 20 GB.
We disabled the Rheem stage parallelization feature to have
only one single platform running at any time. We obtained
all the cost functions required by our optimizer as described
in Section 4.5. We considered common data analytic tasks
from three important areas, namely text mining, machine
learning, and graph mining. Details on the datasets (stored
on HDFS) and tasks are shown in Table 1. We loop SGD for
1, 000 and CrocoPR 10 times.

6.2 Experiments Results
Platform Independence. We start our experimental
study by evaluating how well Rheem selects a platform to
execute a task. For this experiment, we forced Rheem to
use a single platform when executing a task and checked if
it chooses the one with the best runtime.

Figures 9(a)-(c) show the results for increasing dataset
sizes6. The blue stars indicate the platform chosen by
Rheem. The first observation is that there is no single plat-
form that outperforms all other platforms for all cases. In
fact, the differences in the runtime values are significant. For
example, Flink can be more than 4× faster than Spark and
Spark can be twice faster than Flink for the different tasks
we considered in our evaluation. The results show that sup-
porting platform independence indeed prevents tasks from
falling into such non-obvious worst cases. In detail, our sys-
tem prevents: (i) WordCount on JavaStreams for 100% of its
input dataset (i.e., 3GB), where JavaStreams suffers from a
single threaded data access; (ii) SGD on Spark and Flink for
25% of its input dataset, where the overhead of both plat-
forms still dominates execution time; and (iii) CrocoPR on
JGraph for more than 10% of its input dataset as it simply
cannot efficiently process large datasets. More importantly,

6For the non-synthetic datasets, we created samples from
the datasets of increasing size.

Rheem always selects the best platform in all cases, even
if the execution time is quite similar on different platforms.
These results clearly show the importance of providing plat-
form independence.

Rheem selects the most efficient platform for all tasks
we considered.

Opportunistic Cross-Platform. We now evaluate if our
system is able to (i) use multiple platforms to reduce ex-
ecution times and (ii) spot “hidden” opportunities for the
use of multiple platforms. Thus, we re-enable Rheem to use
any platform combination for performing one single task.
We consider the same tasks as in the previous set of experi-
ments but with two differences. First, we now study SGD on
its entire dataset only and for different batch sizes. Second,
we run CrocoPR on 10% of its input dataset and for a vary-
ing number of iterations. Additionally, to further stress the
importance of finding hidden cross-platform execution op-
portunities, we ran a subquery (a Join task) of the TPC-H
Q5. This additional task joins the relations SUPPLIER and
CUSTOMER (which are stored on Postgres) on the attribute
nationkey and aggregates the results on the same attribute.

We show the results of this experiment in Figures 9(d)-
(f) and 10(a). We overall observe that performing cross-
platform data processing considerably improves over single-
platform data processing. In detail, we observe Rheem is:
up to 20× faster than Spark; up to 17× faster than Flink;
up to 12× faster than JavaStreams; up to 8× faster than
JGraph; up to 6× faster than Giraph; and more than 3×
faster than Postgres. There are several reasons for having
this large improvement. For SGD, Rheem mixes Spark with
JavaStreams. It uses Spark execution operators when deal-
ing with a large number of data points, i.e., for the Sample
operator and all operators outside the loop. In contrast,
it uses Java execution operators for computing and updat-
ing the gradient of a single data point, which is done in-
side the loop. When running CrocoPR, our system surpris-
ingly uses a combination of Flink and JGraph, even though
Giraph is the fastest baseline platform. The reason is that
after the preparation phase on Flink, the input dataset for
the PageRank operation on JGraph is a couple of megabytes
only. For WordCount, our system slightly outperforms Spark
and Flink by bringing the results to the driver application
via JavaStreams rather than directly from Spark, which is the
fastest baseline platform for this task. When moving data
to JavaStreams, Rheem uses the action Rdd.collect(), which
is more efficient than the operation Spark uses to move data
to the driver (Rdd.toLocalIterator()). Figure 10(a) confirms
the importance of the cross-platform data processing ap-
proach. We compared Rheem with the execution of Join
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Figure 10: (a) Join, (b) Progressive Optimizer, and
(c) Data Exploration

on Postgres, which is the obvious platform to run this kind
of queries. Surprisingly, Rheem significantly outperforms
Postgres, even though the input data is stored on Postgres.
It is at least twice faster than Postgres for a scale factor of
10. This is because it executes the projection on Postgres
and moves only the projected data into Spark to leverage its
parallelism to perform the join and aggregation operations.

Rheem is able to identify hidden opportunities to im-
prove performance by using multiple platforms.

Progressive Optimization. We proceed to evaluate the
effectiveness of the progressive optimizer (PO) by extending
the Join task. We added a low-selective selection predicate
on the names of the suppliers and customers. Then, to sim-
ulate the usual cases where users cannot provide accurate
selectivity estimates, we provide a high selectivity hint to
Rheem for this filter operator. Figure 10(b) shows the re-
sults for this experiment. We clearly observe the benefits
of our progressive optimizer. In detail, Rheem first gen-
erates an execution plan using Spark and JavaStreams. It
uses JavaStreams for all the operators after the Filter be-
cause it sees that Filter has a very high selectivity. However,
Rheem figures out that Filter is in fact low selective. Thus,
it runs the re-optimization process and changes on-the-fly
all JavaStreams operators to Spark operators. This allows
it to speed up performance by almost 4 times.

Rheem further improves performance notably by re-
optimizing plans on-the-fly at a negligible cost.

Data Exploration. We also evaluate the cost that Rheem
incurs in exploratory mode, where preliminary results are
returned to users in less than 2 seconds and a task can be
paused at and resumed from any part of its plan. We modify
the WordCount task to compute how many words have less
than 10 characters and equal or more than 10 characters.
We insert a sniffer right before the reduce operator of this
task to keep track of both sets of words. Figure 10(c) shows
the results of this experiment. We observe that Rheem not
only enables the underlying platforms to support data ex-
ploration, but it does so with an overhead of ∼36% only.

Rheem enables underlying platforms to run in ex-
ploratory mode at a low cost.

Comparison with Musketeer. Lastly, we compared
Rheem with its closest competitor, Musketeer [34]. For this
experiment, we considered CrocoPR because the authors re-
ported this task to be a case where Musketeer chooses multi-
ple platforms. Figure 11 shows the results in log scale when
varying the dataset sizes for 10 iterations and the number
of iterations for 10% of the dataset. Overall, we observe
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Figure 11: Rheem outperforms Musketeer by more
than one order of magnitude.

the superiority of Rheem over Musketeer, especially as the
number of iterations increases: Rheem is up to 85 times
faster than Musketeer. Note that, in contrast to Musketeer,
Rheem keeps its runtime constant as the number of itera-
tions increases. This is because: (i) Musketeer, among other
things, checks dependencies, compiles and package the code,
and writes the output to HDFS at each iteration (or stage),
which comes with a high overhead; (ii) Rheem executes the
page rank part of the task (i.e., after the data preparation)
on JavaStreams, which allows it to perform each iteration
with almost zero overhead.

7. DISCUSSION
We first discuss our system’s limitations and then sum-

marize the lessons learned while building and using Rheem.

7.1 Limitations
Rheem does not support any stream processing platform.

While users can easily supply new batch processing plat-
forms, stream processing requires to extend Rheem’s core.
We plan to do so by following the lambda architecture
paradigm [49]. In addition, Rheem currently relies on the
fault-tolerance of the underlying platforms and is, thus, sus-
ceptible to failures while moving data across platforms. We
plan to incorporate some basic fault-tolerance mechanism
at the cross-platform level. Other issues that remain to
be addressed include: adding methods that speed up inter-
platform communications, such as the one proposed in [35],
integrating Rheem with resource managers to incorporate
changes in the availability of computing resources, and sup-
porting simultaneous execution of Rheem jobs.

7.2 Lessons Learned
We now give the main takeaway messages from our jour-

ney in building Rheem and several Rheem applications.

Extensibility As A First Class Citizen. A cross-
platform environment is quite dynamic as new platforms
are constantly appearing and applications often emerge with
new requirements. Thus, a cross-platform system has to be
easily extensible and flexible enough to adapt to these con-
stant changes with little effort. Having this in mind, we de-
signed Rheem in a way that extending it with new Rheem
or execution operators does not require developers to worry
about any of Rheem’s internal implementation details. De-
pending on the complexity of the execution operator, it can
take from one hour (for simple operators already supported
by the underlying platform, such as Map) to one day (for
more complex operators) to add a new operator with its
mappings. For example, we had to design a new algorithm
for inequality join [42] for BigDansing [41] and provide its
implementation as a new join operator. Similarly, we had
to implement new sample operators that are IO-efficient for



ML4all [40]. We experienced the same when developing
Data Civilizer: we could easily add a new operator to wrap
any dataset as a relational table. In all cases, it took the
application developers one day for adding a couple of Java
classes to the codebase. Furthermore, the addition of a new
platform always takes constant time, i.e., regardless of how
many platforms are already supported. For instance, sup-
porting Giraph, which has a graph-based data model, took
two additional days for providing its communication chan-
nels and conversion operators (after adding all its execu-
tion operators and mappings). This experience constitutes
strong evidence of the benefit of an extensible architecture,
where users can plug in operators with little effort.

Learning Cost Models. We also realized that using a tra-
ditional approach of isolated profiling to build a cost model
is simply not effective for several reasons. First, one has
little control over the underlying platforms. Second, cross-
platform parallelism is difficult to take into account. Third,
isolated profiling does not reflect at all how different plat-
forms interact with each other, including the data movement
costs. This led us to adopt a learning approach to build the
Rheem’s cost model. We used machine learning to learn
the cost model from actual execution logs. This not only re-
moved the complexity of calibrating the cost model but also
made Rheem easier to deploy on any cross-platform setting.

Rapid Prototyping and Portability. Several works
have shown that rapid prototyping and portability are cru-
cial factors when building big data systems [24, 33, 59]. We
confirmed these observations when developing our Rheem
applications. We had to iterate several approaches to ad-
dress the encountered problems and take good design deci-
sions. Rheem enabled us to do so in a period of time that
was not possible before. For example, when building the
data integration sub-system of Data Civilizer, we needed
only one week to implement and play with several differ-
ent approaches to detect similar data elements existing on
different data storages. This was possible because Rheem
allowed us to focus on the logic of the different approaches
rather than on the tedious platform integration chores. Only
building the program to integrate and coordinate the under-
lying platforms would not be possible to do in few weeks.
Rheem also provided us with application portability, which
allowed us to try out different underlying platforms.

Flexible High-Level Languages. The emergence of new
platforms and applications and their ensuing requirements
very often influences the way high-level languages have to
be designed. A high-level language must be flexible enough
to adapt to the needs of applications. This was one of
the driving principles when designing RheemLatin and the
Rheem Studio [47]. In fact, we exploited such a flexibility to
adapt both high-level languages to two specific applications:
ML4all and Rheem Studio.

8. RELATED WORK
The research and industry communities have proposed a

myriad of different data processing platforms [5, 8, 11, 18,
26, 63]. In contrast, we do not provide a data processing
platform but a novel system on top of them.

Cross-platform data processing has been in the spotlight
only very recently. Some works focus only on integrating dif-
ferent data processing platforms with the goal of alleviating
users from their intricacies [1, 2, 10, 12, 30]. However, they

still require expertise from users to decide when to use a spe-
cific data processing platform. For example, BigDAWG [30]
requires users to specify where to run tasks via its Scope and
Cast commands, which already require expertise from users.
Only few works share a similar goal with us [29,34,46,58,62].
However, they substantially differ from Rheem. Two main
differences are that they consider neither data movement
costs nor progressive task optimization techniques, although
both aspects are crucial in cross-platform settings. Addi-
tionally, each of these works differs from Rheem in various
ways. Musketeer maps task patterns to specific underlying
platforms, hence it is not clear how one can efficiently map
a task when having similar platforms (e.g., Spark vs. Flink
or Postgres vs. MySQL). Similarly, in Myria [62], it is hard
to allocate tasks when having similar platforms because it
comes with a rule-based optimizer, which additionally makes
it hard to maintain. IReS [29] supports only 1-to-1 mappings
between abstract tasks and their implementations, which
limits expressiveness and optimization opportunities. QoX
focuses only on ETL workloads [58]. DBMS+ [46] is limited
by the expressiveness of its declarative language and hence
it is neither adaptive nor extensible. Other complementary
works focus on improving data movement across different
platforms [35] or libraries by using a common intermedi-
ate representation and executing the scripts in LLVM [52].
However, none of them address the cross-platform optimiza-
tion problem. Tensorflow [15] follows a similar idea, but for
cross-device execution of machine learning tasks and thus it
is orthogonal to Rheem. In fact, Rheem could use Tensor-
Flow as an underlying platform.

The research community has also studied the problem
of federating relational databases [57]. Garlic [22], TSIM-
MIS [23], and InterBase [21] are just three examples. How-
ever, all these works significantly differ from Rheem in that
they consider a single data model and simply push query
processing to where the data is. Other works integrate
Hadoop with an RDBMS [28,44], however, one cannot easily
extend them to deal with more diverse tasks and platforms.

To the best of our knowledge, Rheem is the first system
to support all four cross-platform use cases (see Section 2).

9. MAY THE BIG DATA BE WITH YOU!
Given today’s data analytic ecosystem, supporting cross-

platform data processing has become rather crucial in or-
ganizations. We have identified four different situations in
which an application requires or benefits from cross-platform
data processing. Driven by these cases, we built Rheem, a
cross-platform system that decouples applications from data
processing platforms to achieve efficient task execution over
multiple platforms. Rheem follows a cost-based optimiza-
tion approach for splitting an input task into subtasks and
assigning each subtask to a specific platform, such that the
cost (e.g., runtime or monetary cost) is minimized. Our
experience while building Rheem raised several interesting
questions that need to be addressed in the future, namely:
How can we (i) reduce the inter-platform data movement
costs? (ii) address the cardinality and cost estimation prob-
lem? (iii) efficiently support fault-tolerance across plat-
forms? (iv) add new platforms automatically? and (v) im-
prove data exploration in cross-platform settings?
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