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ABSTRACT

For real-world time dependent road networks (TDRNs), an-
swering shortest path-based route queries and plans in real-
time is highly desirable by many industrial applications. Un-
fortunately, traditional (Dijkstra- or A*-like) algorithms are
computationally expensive for such tasks on TDRNs.

Naturally, indexes are needed to meet the real-time con-
straint required by real applications. In this paper, we pro-
pose a novel height-balanced tree-structured index, called
TD-G-tree, which supports fast route queries over TDRNs.
The key idea is to use hierarchical graph partitioning to
split a road network into hierarchical partitions. This will
produce a balanced tree, where each tree node corresponds
to a partition and each parent-child relationship corresponds
to a partition and its sub-partition. We then compute and
index time dependent shortest paths (TDSPs) only for bor-
ders (i.e., vertices whose edges are cut by a partition).
Based on TD-G-tree, we devise efficient algorithms to sup-
port TDSP queries, as well as time-interval based route plan-
ning, for computing optimal solutions through dynamic pro-
gramming and chronological divide-and-conquer. Extensive
experiments on real-world datasets show that our method
significantly outperforms existing approaches.

1. INTRODUCTION

Route querying and planning over road networks are im-
portant in many applications, especially for GPS navigation
services. Consider a group of tourists shopping in the Desert
Outlets who want to join the Night Tour in Las Vegas Down-
town. To avoid traffic jam and get more time for shopping
and sightseeing, they want to find the optimal departure
time, as well as minimizing the travel time on the way.

Real-world road networks are typically formalized as time-
dependent road networks (TDRNs), where an edge is associ-
ated with a time dependent weight function for modeling
time-dependent speed. Shortest path based queries over
TDRNs raise several algorithmic challenges.

Non-index methods are typically Dijkstra- or A*-like |4,
10| |21}, 123} [30], which usually take dozens of seconds to an-
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swer a query over large TDRNs, thus cannot meet the real-
time constraint. Index-based methods either suffer from
unstable preprocessing time over time-varying edge weights
(TCH [2]), or unstable performance caused by inaccurate cost
estimation of A*-based heuristics (TDCALT [7]).

On one side, non-index methods over large TDRNs are
not efficient enough. On the other side, indexing all short-
est paths for all time intervals is prohibitively expensive in
space. Hence, our key observation is that, if we can smartly
select only a small number of shortest paths to index, we
may be able to efficiently answer different types of single-
pair shortest path queries in TDRNs.

We propose a height-balanced tree index, i.e., TD-G-tree,
based on hierarchical graph partitioning over a TDRN. More
specifically, each tree node corresponds a graph partition,
and its children nodes are associated with corresponding
sub-partitions. We maintain shortest paths between bor-
ders of partitions, where a border is a vertex with at least
an edge being cut by a partition.

We also show that how TD-G-tree can support single-
pair time dependent shortest path queries, including: time
dependent shortest path (TDSP) that asks the best route at
a specific time, and time-interval based planning (TIP) that
looks for the best route within a specific time interval. The
basic idea is that we use the borders to guide us to com-
pute the time-dependent shortest paths and do not need to
blindly traverse the graphs.

There are two requirements for TD-G-tree to be used by
a navigation system. As usually traffic flow pattern of the
same day of the weeks may not change dramatically, his-
torical time-dependent road network data [12] is needed for
constructing the TD-G-tree. Moreover, emergent traffic flow
changes on some roads from the real-time traffic is sup-
plemented to search alternative routing plans and update
TD-G-tree periodically.

Our main contributions are summarized as follows.

1. We formalize TDRNs, introduce time dependent weight
functions associated with edges, and define different
types of queries studied in this work (Section .

2. We present a new index, TD-G-tree, and describe its
construction and maintenance (Section .

3. We devise novel algorithms to efficiently support
popular time-dependent queries over TDRNs, using
TD-G-tree (Section [4).

4. We conduct experiments to show the superiority of
TD-G-tree over existing approaches (Section .

!Guoliang Li is the corresponding author.



Table 1: Table of Notations

|  Notation Definition
G(V,E,W,T) A graph for a time dependent road network

W (t) Time-dependent weight function of edge €viv;
Pusve A path from vs to ve: (Vs = V1, , VE = Ve)
Qugve The set of all paths from vs to ve

Tpugue (t) Travel-time function from vs to ve, via path py v,

T ve t) Shortest travel time function from vs to ve
B(G;) The border set of G;

i Travel-time matrix of G;

X(Gy) The vertices in the travel-time matrix M;
leaf (v) The corresponding leaf node of vertex v
LCA(G;, G;) The least common ancestor node of G; and G
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Figure 1: Piecewise linear function

2. BACKGROUND
2.1 Time Dependent Road Networks

‘We summarize the notations used in this paper in Table

DEFINITION 1. [Time Dependent Directed Graph.] A
time dependent road network is modeled as a directed graph
G = (V,E,W,T), where each v; €V is a vertex, ey,»; € £
is a directed edge from v; to vy, Wo;v; € W is a time depen-
dent weight function associated with edge €v;v; 5 and T is a
time interval [ts, te].

We use piecewise linear functions (PLF) to model the
edge weights. Given two points (zo,y0) and (z1,y1) where
zo < x1, the linear interpolant is the straight line between
them: for any z € [0, z1], its y is f(x) = yo+ (x—zo) L1122
Given a set P of consecutive points (zo,40), ..., (Tm,ym),
its set of interpolation points, denoted by P!, is a subset of
P, by removing all points (z;,y;) (0 < ¢ < m) in P where
zz:gi: = ;’ZJ::Z: That is, the set P! of interpolation
points is sufficient to represent P, which can significantly
save space overhead.

Example 1: [Piecewise Linear Functions.] Consider a set
of points {(z0,%0), - - ., (%4,ya)} in Figure[l] Its set of inter-
polation points is {(zo, yo), (z2,y2), (¢3,Y3), (4, Y1)}, where
(z1,y1) is removed. There are three linear interpolants,
from (zo,y0) to (z2,y2), (w2,92) to (v3,y3), and (x3,ys3)
to (z4,ya) — each linear interpolant corresponds to a linear
function. m|
DEFINITION 2. [Piecewise Linear Weight Functions.]
Given an edge e associated with a set of weights (travel time)
at specific time as S = {(t1,w1),..., (tx, wr)} where t1 = tg
and t, = te, let ST denote the set of interpolation points of
S. The piecewise linear weight function w for edge e is the
linear interpolants for ST, and the evaluation of the function
at time t, i.e., Wy, (t), returns a weight, indicating the time
needed to move from v; to v; departing at time t.

Computing Piecewise Linear Weight Functions. We
first compute the average travel cost on each road in every
5 minutes using historical data. We then take the average
cost as a discrete point, and use piecewise linear functions
(PLF) to fit these discrete points [18]. Note that the weight
function for edge €., v; might be different from that for edge
€v;jv; in practice. In this paper, we simply assume they are
the same for ease of presentation — treating them differently
will not affect our algorithms.

Table 2: Edge Weights (ey,0; = €uv;v,)
| Edge  Weights {(time, weight)}

Cvrup | 1(0,8), (20,8), (35, 20), (60,20) }
Conug {(0,8),(60,8)}
Cuguy {(0,4), (60, 4)
Cuyvg {(0.5),(60,5)}
Cugug {(0,10), (50, 15), (60, 15)
Cugus {(0,15). (60, 15)
Cuguy {(0,6), (60,6}
Cugug {{0,30), (30,10), (60,10}
Cunug {(0.5),(60,5)}
Cuguig {(0,2),(60,2)}
Curgui {(0,3),(60,3)}
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Example 2: [Graph.] Figure [2| shows a time dependent
directed graph (please ignore the circles for now, which will
be discussed in Sectionfor hierarchical graph partitioning).
[Edge Weights.] Edge weights are given in Table For
simplicity, we assume the weight for edge ey,+; is the same
as €y;v;, so only one is given. Each edge is associated with
a set of (time, weight) pairs, e.g., the weight (0,8) for ey, v,
says that it takes 8 minutes from v; to vz at time O.

[Piecewise Linear Weight Functions.] Consider Figure and
its edge weights in Table Some sample piecewise lin-
ear weight functions are shown in Figure where edge

weights are time-varying, such as wy,v, (t). O
m w30
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Figure 3: Sample PLFs

DEFINITION 3. [Path.] A path p,..., is a sequence of
connected vertices (vs, ...,ve). We write v v, as the set
of all paths from vs to ve.

DEFINITION 4. [Travel Time Function of a Path.] Given
a path py,v;, let puiv,_, be a sub-path of py,v; by removing
the last vertex v;. The travel time function for path py, .,
starting at time t, denoted by 7, .. (t), is recursively defined
as: Ty, (8) = Toyy e (&) F W, 10, ( + Tpyo,_, (1)), which
is the time needed from vi to vi—1 via path py,v, , depart-
ing at t, plus the time from v;_1 to v; after reaching vi—i.
Obviously, 7, ,, (t) = 0.

Now we introduce the travel time function of the shortest
path between two vertices departing at a specified time.

DEFINITION 5. [Shortest Travel Time Function.] The
shortest travel time function (STTF) from vs to ve at time
t, denote by 7., (t), is the minimum time from all possi-
ble paths v, , i-e.; Ty o, (t) = ming, , {7p, ., (1) | po.ve €
Ovsve }-  The corresponding shortest path is denoted by
P (1):



Note that we implicitly assume the FIFO |23| property:
for any time ¢ < ¢/, we have t + 75 . (¢t) < t' + 75 .. (¢).

Example 3: [Paths.] This, (vo, v1,v9), is a path from vy to
vg. (o, v2), (vo, v1,v2) and (vo, V1, Vg, Ve, V2) are in Quyvs-
[Travel Time Functions.] Some sample travel time functions
are given in Figure For instance, T(y,,v,)(t) = Woyvy (1)
and T(u,,vg,01) (£) = Wogwo (8) + Weguy (84 Wogwg (1))

[Shortest Travel Time Functions.] One shortest travel time
function is 77, (t) =ming, , {Tpu,u, (1) | Posvr € Quavi}s
which is shown as the bold dashed line in Figure |

2.2 Time Dependent Shortest Path Queries

We introduce two types of widely used queries.

DEFINITION 6. [Time Dependent Shortest Path (TDSP).]
Given a source vertex vs, a target vertex v., and a departure
time t from vs, the time dependent shortest path query,
denoted by Q(vs,ve,t), returns the exact fastest travel time
To.we (1) and its associated path p; . (t).

The other type is for route planning — one always wants to
find the fastest route from one vertex to another, departing
within a specific time interval, instead of just a time point.

DEFINITION 7. [Time Interval Planning (TIP).] Given a
source vertex vs, a target verter v., and a departure time
interval I = [t,t'], the time interval planning query, denoted
by Q(vs,ve, I), returns t* € I, at which it takes the ezact
fastest time from vs to ve, denoted by T,,,,(t"), and its as-
sociated path py,_, (t*).

Note that, for simplifying our discussion, we focus on de-
parture time interval when using I. However, it could also be
arrival time interval for a different type of route planning.

Example 4: Consider Figure and Table Let’s
discuss different types of queries from vz to v;.

[TDSP: Q(v2,v1, 10).] It has a fixed departure time ¢t = 10. A
TDSP algorithm will return the fastest travel time (8 mins)
through optimal path (va, v1).

[TIP: Q(v2,v1,[20,60]).] It has a time interval [20, 60]. A TIP
algorithm will return the optimal departure time as t* = 20
with fastest travel time (8 mins), and the associated optimal
path is (v, v1). O

3. TD-G-TREE: TIME DEPENDENT IN-
DEX

As mentioned earlier, shortest path related queries over
large TDRNs require high computational cost, such that tra-
ditional algorithms are not efficient enough to support real-
world applications. Apparently, indexes are needed.

Our key idea is inspired from two aspects: (1) Hierarchical
partitions are widely used to index spatial data, such as R-
tree. (2) No one can afford to index all pairs of shortest
paths — with time dependent edge functions the number will
be blown up. Fortunately, oftentimes, only a small number
of time dependent shortest paths are needed to efficiently
support shortest paths of all pairs, such as G-tree 38| that
indexes static shortest paths based on partitions.

In this section, we will first define our proposed index
TD-G-tree in Section [3.1] and then elaborate how to con-
struct and update it in Section and respectively.

3.1 The TD-G-Tree Index

Before defining TD-G-tree, let’s introduce its main con-
cepts: (hierarchical) graph partitioning, border vertices, and
travel-time matrixz for each partition.

DEFINITION 8. [Graph Partitioning.] Given a graph G =
(V,E,W,T), a graph partitioning of G, denoted by A(G), is
a set of n subgraphs G; = (Vi, E;, W;,T) (i € [1,n]), where
(1) V =Uiepm Vis (2) VinV; =0 ifi # j; and (3) each G;
is an induced subgraph of G —i.e., consisting of vertices V;
and all edges connecting pairs of vertices V; in E and their
associated weight functions.

Example 5: [Graph Partitioning.] Figure [2| shows sample
partitions, e.g., A(G1) = {G2,G3} is a graph partitioning
over (1.

[Hierarchical Graph Partitioning.] We can further partition
G2 into {G4,G5}, and Gs into {Ge,G7}, which are also
shown in Figure a

We will discuss how to perform hierarchical graph parti-
tioning in Section[3.2] Note that during graph partitioning,
all edges across partitions are cut, where corresponding ver-
tices are called border vertices (or simply as borders). Bor-
ders are important for our index as we can safely hop over
non-border vertices through borders during query process-
ing. Formally, we define borders below.

DEFINITION 9. [Border.| Given a graph G =
(V,E,W,T), let Gy(Vy, Ee,Ws,T) be one of its sub-
graphs generated by hierarchical graph partitioning of G.
A wvertex v; € V is a border of G, if there exists an edge
ev;v; € B but ey, v; ¢ E,. We use B(G3) to denote the set
of borders of graph G.

Example 6: [Borders.] Consider sub-partitions A(G1) =
{G2,G3} of Gy in Figure We have B(G2) = {v2,v9} and
B(G3) = {vs,ve}. Recursively, we get B(G4) = {vi,v2}. O

DEFINITION 10. [Travel-Time Matriz.] Given a set X of
vertices, a travel-time matrix M maintains shortest travel
time functions (see Definition @ of all pairs of vertices in
X. Given Yv;,v; € X and a departure time t, M[v;,v;](t)
TetUTnS Ty (t), the shortest time from v; to vj.

We simply write matriz for travel-time matrix. Intu-
itively, we want to maintain a matrix for each partition,
such that any route query can be efficiently computed by
using these matrices. Because the vertices of a sub-partition
(e.g., {vo,v1,v2} of G4) are clearly also vertices of its parent
partition (i.e., G2), we need to be careful to avoid data re-
dundancy, for which we differentiate two types of partitions:

e Leaf Partitions:  those partitions without sub-
partitions, such as {G4, G5, G, G7}.
e Internal Partitions: those with sub-partitions, such as

{G17G27G3}~

Intuitively, for a leaf partition G, all vertices need to
be indexed in My, i.e., X(Gr) = Vr. However, we do not
maintain matrix entires between non-border vertex pairs to
save its huge space cost. As will be shown later in Section [4]
we can recover shortest paths even without these pairs. For
an internal partition G, the vertices needed for its matrix
are the union of all its sub-partitions’ borders, X (Gr) =
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Figure 4: A sample TD-G-tree
Ug.ea(a;)B(Ge), because all other path information within
G can be assembled by the matrices of its sub-partitions.

Example 7: [Leaf Partitions.] We have X(G4) = {vo,v1,
va} and X (Gs) = {vs3,v4,v5}.

[Interval Partitions.] We have X(G2) = {vi,v2,v9}, be-
cause A(G2) = {G4,G5}, B(G4) = {v1,v2} and B(Gs) =
{vo}. Similarly, we have X(G3) = {vs,vs}. Moreover,
X(G1) = {v2,vs,v6,v9}, because A(G1) = {G2,G3}, B(G2)
= {v2,v9} and B(G3) = {v3,v6}.

Also, note that B(G2) = {va2,ve} (Figure [d), and it is
not the same as X (G2) = {v1, v2,v9}, which is the union of
borders of G2’s child-nodes, B(G4) and B(G5s).
[Travel-time Matrices.] Figure[5]shows two matrices: M3 for
an internal partition Gs, and M, for a leaf partition G4. In
My, vg is a non-border vertex, and vy, v2 are borders of Gy4.
Specifically, entry Mui[vz,v1] represents the shortest travel
time function from vz to v1 (7,,,, in Figure . a

We are now ready to define our proposed index. Typically,
any hierarchical partitioning needs two parameters: one to
restrict the number of partitions for each level of partition-
ing, and the other to constrain the size of a leaf partition.

TD-G-tree. Given a TDRN graph G, fanout parameter kg,
and the maximum number of vertices in a leaf node x;, its
TD-G-tree is a height-balanced tree that:

1. Each tree node n; represents a partition G, i € [1,m],
where the m partitions are generated by hierarchical
graph partitioning. The root tree node n; is for Gi.

2. Each internal node has s (> 2) child nodes.

3. Each leaf node contains at most x; (> 1) graph ver-
tices, and all leaf nodes appear at the same level.

4. Each node n; maintains a travel-time matrix for G;.

Properties (1)-(3) ensure that TD-G-tree is a balanced
tree; (4) is used to accelerate the performance of time de-
pendent shortest path search (see more details in Section.

For convenience, we use “vertex” for a vertex in the road-
network graph, and “node” for a node in the TD-G-tree.
Also, we will use the tree node n; and its corresponding
partition GG; interchangeably.

Example 8: [TD-G-tree.] Figure 4| shows a TD-G-tree
for the TDRN in Figure The tree nodes are generated by
hierarchical graph partitioning (e.g., Example [5). For an
internal partition such as G3, we maintain a matrix (Fig-
ure ) for its X (G3) = {vs,ve}. For leaf partition such
as G4, we maintain a matrix (Flgure- for all its vertices
Vs = {U07U17U2}

3.2 TD-G-Tree Construction

The construction of a TD-G-tree for a TDRN G consists of
two parts: its tree structure and the associated matrix for
each tree node. The tree structure is computed based on the
topology of G, and the matrix of each tree node is computed
based on vertices X (G;) associated with each tree node G;.

Ms V3 Ve
3 {(0,0), (60,0)} {(0,20), (15, 20), (30, 10), (50, 10)}
vs | {(0,20), (15, 20), (30, 10), (50,10)} {(0,0), (60,0)}

(a) Matrix M3 of sub-graph Gs

Vo U1 U2
Vo {(0,4), (56,4)} {(0,8), (52, 8)}

o | {00,600} | (00 @00} | OTERD
10,8), (20,8],

V2 {(078)7(52a8)} (25,12),(48,12)} {(070)7(6070)}

(b) Matrix My of sub-graph G4
Figure 5: Travel time matrices for G3 and G4

3.2.1 Computing TD-G-Tree Nodes based on Hier-
archical Graph Partitioning

Given a TDRN graph G, a fanout parameter k¢, and a leaf
node size threshold x, it first partitions G into xy approxi-
mately equal-sized subgraphs (i.e., [Vi|~ - -- ~ |V, ), which
form the child-nodes of G, i.e., {n1,...,n4,}. It then recur-
sively partitions each of the above subgraphs n; (i € [1, k¢]).
The entire process terminates when the new subgraphs have
at most k; vertices, i.e., reaching the leaf tree nodes.

Example 9: Figure 2| shows a hierarchical graph partition-
ing of G'1, by setting ky = 2 and x; = 4. a

Note that finding the optimal graph partitioning for min-
imizing cut edges is NP-hard [22]. In this paper, we adopt
a well-known multilevel partitioning algorithm [22], which
minimizes the number of edges to cut, and guarantees that
each subgraph has nearly the same size through a balancing
factor. As a result, we get a balanced TD-G-tree.

3.2.2 Computing Matrices for Tree Nodes

The primary goal of using matrices is to maintain short-
est travel time functions to accelerate shortest path queries
Q(vs, ve) between two vertices, i.e., by only visiting a small
part of borders in least common tree node n that contains
both vertices vs and ve, and descendent tree nodes of n.

We face two main challenges for computing matrices.

[C1.] Redundant Matriz Entries. For any tree node n; (for
partition G;), all vertices of G; also belong to the parent-
node n; of n;, i.e., G; is subgraph of G;. Evidently, main-
taining all graph vertices in the matrix for each partition
will cause heavy data redundancy.

[C2.] Expensive Computation. For any two vertices in a
matrix, we need to compute the global optimal travel time
functions between them, which oftentimes involves vertices
that are not in the same partition — running a global algo-
rithm to compute shortest travel time functions (STTFs) for
each tree node is prohibitively expensive.

To tackle challenge C1, we have discussed earlier the graph
vertices that are needed to maintain for each matrix (see
Example [7). Besides, the entries of border pairs shared
by different matrices refer to the same physical memory,
which eliminates redundancy caused by shared borders. For
challenge C2, we propose a novel two-phase algorithm: we
first compute the “local optimal” travel-time functions in
a bottom-up fashion over the TD-G-tree, and then com-
pute the “global optimal” travel-time function in a top-
down fashion to gradually refine each imprecise matrix entry.
Next, let’s describe our proposed two-phase approach.

Two-Phase Algorithm. The two-phase method — “ap-
proximate: bottom-up local-optimal” and “precise: top-



Algorithm 1: Two-Phase Matrix Building

Input: M = My, -, My : Matrices, W: Edge weights
Output: M: Matrices with optimal entries
// Approximate: Bottom-up Local-optimal
Initialize matrices entries with W
foreach node n; from i =k to 1 do
TD-Floyd (M,);
if n; # root, let ny the parent node of n; then
foreach two distinct vertices
vs, Ve € X(Gi) N X(Gy) do
L Mf[vsyve] = M'i[vmve];

AR W N

=]

// Precise: Top-Down Global-optimal
7 foreach non-leaf node n; from i =1 to k do

8 foreach child node G. of G; do

9 foreach two distinct vertices
vs,ve € X(Ge) N X(G;) do

10 if M;[vs,ve] # Mc[vs, ve] then

11 Mc[v‘mve] = M'i[U37ve];

12 Mark M, as dirty;

13 if M. is dirty then

14 | TD-Floyd (M.);

Algorithm 2: TD-Floyd (M)

Input: M: A travel time matrix for partition G
Output: M: A refined travel time matrix
1 foreach vertex vy in the vertices X(G) of matriz M do
foreach v, in X(G) do
foreach v. in X(G) do
7',,25/,Je:M[vs7 vi]+Com(M vy, ve],M [vs, Vi]);
Mvs, ve]|=Min(M [vs, ve], T/

v5v6)7

@ 0N

down global-optimal” — to compute the travel-time functions
for each matrix, is shown in Algorithm

To summarize, during the bottom-up local-optimal phase
(lines 2-6), we compute the matrix of a partition G; by
only considering the information within G;. This phase is
approzimate (local optimal) because the precise STTF may
involve paths via some vertices outside of G;. In the top-
down phase (lines 7-14), we use the global optimal infor-
mation computed in G (the entire graph) to refine those
approximate matrix entries to be precise.

Approximate: Bottom-Up Local-Optimal

It works as follows, from leaf nodes (i.e., bottom), to the
internal nodes (i.e., up), until the root (the loop in lines 2—6
is from k down to 1, i.e., leaf to root).

For each tree node n;, we first run a generalized Floyd
algorithm (line 3, will be explained shortly) over only the
vertices X (G;) in subgraph G;, and the number of vertices
in X(G,;) is much smaller than the number of vertices in G;.

Afterwards, a key optimization to share computation is
that when a child-node G; and its parent-node Gy share
common vertices in their matrices, i.e., those vertices in
X (G;) N X(Gy), the corresponding matrix entry in My can
be directly assigned (lines 5-6). A further optimization to
save space is that instead of synchronizing My[ve,vs] and
My[va,vs] across different matrices, they directly use the
same physical entry linked by pointers — a synchronization
is then done automatically.

Precise: Top-Down Global-Optimal

After the above bottom-up phase, each matrix maintains
the local optimal results for the corresponding tree node.
Moreover, since GG1 is the entire graph, its local optimal is
actually global optimal (the proof is omitted due to space

limitation). In what follows, we discuss how to refine those
local optimal results to become the global optimum.

For each non-leaf node starts from the root node (line 7),
it checks the shared vertices between matrix composing set
X of the current node and each of its child nodes (lines 8-
9). If it identifies that the shared vertices’ entries in the
child-node matrix are not global optimal (line 10), it will
first use the guaranteed global optimal results from current
node to update this child-node’s matrix (line 11), and mark
it as dirty (line 12). After finishing checking shared ver-
tices’ for a child-node matrix M., if M. is updated, we re-
run the TD-Floyd algorithm on M. to achieve global optimal
(lines 13-14). Otherwise, M. and its decedent matrices are
already optimal after the Approximate: Bottom-up Local-
optimal phase, and we don’t need to recompute them.

The TD-Floyd Algorithm

Next, let’s complete the discussion of Algorithm [I] by de-
scribing the TD-Floyd algorithm used in lines 3 and 14 of
Algorithm [1} However, before presenting it, let’s pause and
introduce several important functions.

Com(Ty vy, Togwe ). Given two travel-time functions 7., .,

and Ty, v, , the Com() operation refines the travel-time func-
tion Ty,0, by compounding the departure time from ¢ to
Tosvy, (t)3 that is, Tv, v, (t + Toguy, (t))

Min(Tv,ves Toyo, )-  Given  two  travel-time functions

Tosves Toav,s the Min() operation returns a new travel-
time function with shorter travel time for every departure
time ¢ (i.e., a series of interpolation points), denoted by
min{7Tu, v, ; To, v, }-

Example 10: [Com()] In Table Tlvow) = Wugvy =
{(0’8)7 (52,8)}' T(”z»'Ul) = w”z”l = (0’8)7(20’8)’ (35,20)’
(40,20)}. We get 7(u; 01 (L + T(ug,02) (1)) = {(0,8),(12,8),
(27,20), (32,20)}.

Min()] In Figure based on T(y,,v,0;) = 1(0,12),
(48,12)} and 7., ;) = {(0,8), (20, 8), (35, 20), (40,20)}, we
get To,., = {(0,8),(20,8),(25,12), (48,12)} (other paths
with larger travel time are omitted). o

TD-Floyd Algorithm. The TD-Floyd algorithm is given in
Algorithm It takes a matrix M as input, relaxes all entries
and outputs the refined matrix through the dynamic pro-
gramming scheme. More specifically, in each inner iteration
(lines 3-5), we relax travel time function 7y, ., with 7,,., and
Tu,ve; Where we may get part (or whole) of 7, ., (t),t € T
updated with shorter travel time and get a new function.

Example 11: [TD-G-tree Construction.] We show how to
build travel-time matrices for TD-G-tree instance in Fig-
ure @, with the entire process depicted in Figure @ The
partitions M, ..., M7 are initialized with connected edges.

[Bottom-up.] We use TD-Floyd to calculate matrices one-
by-one from leaf-node level to root node (solid line order
in Figure [6(a)). In particular, we initialize Mava,v1] =
Wuyv, and relaxing via path (ve,vo,v1) we get My[va, v1] =
Toguwy » DECaUse there is no faster path via vertices outside G4.
After the computation of My, because the border pair v2 and
vy is in B(G2), so we synchronize My[va,v1] to Ma[va, v1]
(dashed line in Figure . Similarly, during calculating
M3, we only get a viable path (vs,vs) for Ms[vs,vs] and
synchronize to M;[vs,vs]. Another path p1 = (vs, v2, ve) is
ignored during calculating M3 since ve ¢ V3. p1 is a faster
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Figure 6: Two-phase matrix building process

path than (v3, ve) during ¢ € [0, 15], which will be considered
during calculating M [vs, ve].

[Top-down.] Next, we refine matrices in a top-down order
from M; to M~, where matrices already being global optimal
after Approximate: Bottom-up Local-optimal will be pruned,
e.g., Ms’s descendant-node matrices in Figure In par-
ticular, we synchronize M;[vs,vs|(t) = Tyuu,(t), t € [0,15]
(via shorter path (v3,v2,vs))to M3[vs,ve], and mark M3 as
dirty. After processing Mi, because M> and M3 are dirty,
we re-calculate them and ensure their global optimality. O

Space Complexity. A tree node on the i-th level con-
tains O(|V/| //@}71) vertices, where graph partitioning pro-

duces O(log, k¢ - ,/\V|//§3‘c_1) borders (Planar Separator

Theorem [38]). Thus the matrices size at level 7 is O(ﬁ}_l .

(logy 15 - /|VI/K5)?) = Olog ki - [V). We have O(LZL)

leaf nodes, and the tree height is O(lognf My Suppose a

a2h

PLF on time domain T has «(T) linear pieces. The space
complexity is O(lognf Wl og2 kg - |[V]-ol(T)).

R

3.3 TD-G-Tree Update

Below we describe how to update the index according to
real-time traffics. However, time-dependent edge-weight up-
date is really hard, since any edge-weight update may influ-
ence the path selection between any pair of vertices through-
out the graph. Besides, edge-weight update may happen si-
multaneously to many edges that are randomly distributed
on the graph, and we need to design a high-efficient update
policy to avoid lots of redundant calculations. In all existing
works for time-dependent road networks, only TDCALT |7] dis-
cussed the edge weight update problems. However, TDCALT
considered a sub-case that only considers edge-weight in-
crease circumstances. In this paper, we propose an update
strategy with feasible time overheads to handle real-time
multiple edge updates for any PLF forms.

Consider a single edge-weight update, which influences
matrices entries initialized with it or exists shortest path
via it. Hence, we locate all matrices influenced by the up-
date and refine them to optimum. If there are multiple-edge
updates, naturally, there may exist matrices influenced by
more than one edge update.

TD-G-tree Update Algorithm. The basic idea of multi-
ple edge-weight update algorithm, as shown in Algorithm
is a two-phase processing: Approximate: Bottom-up Local-
optimal (lines 5-14) and Precise: Top-Down Global-optimal
(lines 15-25). To avoid redundant calculations of the same
matrix, we maintain two priority queues of node indices
(lines 1-2), i.e., one for bottom-up phase (called UQ) and

Algorithm 3: Edge Weights Update

Input: Matrices M=M, -, M,,, U: Updated weight set
Output: M: Matrices with optimal entries

1 Initialize greater first element-unique priority queue UQ = 0;
2 Initialize less first element-unique priority queue DQ = 0;
3 Re-initialize matrices entries with U;
4 foreach w,;,; € U do UQ.push(LCA(leaf(v;), leaf(v;))); ;
5 while UQ # 0 do
6 n; = UQ.popfront();
7 TD-Floyd (M;);
8 if n; # root, let ny the parent node of n; then
9 foreach two distinct vertices
vs,ve € X(Gi) N X(Gy) do
10 L Mf[vmveE] = Mi[U57”e]§
11 if My is updated then
12 UQ.push(ny);
13 DQ.push(ny);

14 | else DQ.push(n;);;
15 while DQ # 0 do

16 n; = DQ.popfront();

17 if n,; is a non-leaf node then

18 foreach child-node G. of G; do

19 foreach two distinct vertices
vs,ve € X(Ge) N X(G;) do

20 if M;[vs,ve] # Mc[vs,ve] then

21 Me[vs,ve] = M;[vs, vel;

22 Mark M, as dirty;

23 if M. is dirty then

24 TD-Floyd (M.);

25 DQ.push(M.,)

the other for top-down phase (called DQ). Firstly, we lo-
cate matrices influenced by updated edges, re-initialize cor-
responding entries and enqueue UQ with associated nodes
(lines 3-4). Then we dequeue node n; with largest index
from UQ (lines 5-6, i.e., node in higher level) and refine
it with TD-Floyd (lines 7). If there are changes on matrix
entries shared by M;’s father matrix My, we synchronize
changes to My and enqueue it to UQ (line 9-12). Besides,
when My is updated, we enqueue ny to DQ for Precise: Top-
Down Global-optimal (lines 13-14). During top-down phase,
we process the node n; with smallest index first (lines 15-
17, i.e., node in lower level). Similarly, if there exists any
changes to matrix entries shared by child nodes’ matrices,
synchronize changes to child matrices, refine them to global
optimum and enqueue them to D@ (lines 18-25).

It is worth noting that we don’t need to update matrices
on the whole time domain. To get the influenced time do-
main, suppose the minimum time domain cover all edges up-
date intervals to current matrix M; is [tmin, tmax] Where tmin
corresponds to update (vs, ve) with time domain [tmin, ti] (or
a series of edges). We calculate the earliest departure time
tlin from any vertex in M; which can arrive vs at tmin. The
influenced time domain of M; is [tin, tmax)-

Example 12: [TD-G-tree Update.] Based on the
TD-G-tree instance from Figure @, we update some edges
weights in Table [2] i.e., wugu(t) = 5,¢ € [30,45] with
LCA(’Ulo,’Ug) = 61*57 wvzvo(t) = 0.8(t — 40) + S,t c [40, 60]
with LCA(v2,v0) = G4, and wugws(t) = 12,¢ € [30,50] with
LCA(vs,v6) = Gs as shown in Figure For wy,que, the
update only influences Ms. For wy,v,, the update starts
from My, then updates Ma[ve,v1] to M2 and re-calculates
My. Moa[ve,ve] is updated and we synchronize to M; and
re-calculate M;. There is no update to push down, thus it
terminates.
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Figure 7: Edge-weights update

(b) Update multiple edges

For wysu, @ similar update starts from Ms. Then, after
synchronization to My, Mi[vs,ve] is updated in M, thus
we synchronize it to Ms[vs, ve] and re-calculate Ms. Alto-
gether, referring to Figure for multiple update of these
three edges, we start from Ms, and then go to My, then to
Ms, Mo, finally to M;. Checking shared entries of M; and
synchronizing changed ones, we find that only M3 needs to
be refined. After refining M3, no updates synchronize to
Mg and My, the algorithm terminates. For calculation of
matrix update time domain, let’s consider update M5 based
onN Wy, gug (1), € [30,45] as an example. Ms[v1o, vo] is influ-
enced on [30,45] and Ms[v11, ve] on [27,42], thus the update
time domain for Ms is [27,45]. O

Algorithm 4: TDSP

Input: Q = (vs,ve,t), and a TD-G-tree T
Output: Shortest travel time, and incomplete optimal path
1 Locate leaf(vs) and leaf(v.) by a hash table;
if vs and v. are in the same leaf node G, then
L 7oave () = Mp[ve, ve](t);

else

w N

'S

Gi=leaf(vs), Gip=leaf(v.), Ga = LCA(G1,Gy) ;
Find the tree path G1---Ga -Gy in T,
Initialize {T;va (t) = My[vs,vp](t) | vs € B(G1)};
for j=1tok—1do
foreach v, € X(G,;+1) \ X(G;) do
X = X(Gj) N X(Gj11);
7y (D= (2 (DM 1o, (73, ()}

HoO® N O n

o

12 T:S'Uc (t)

=, (70, () + Mo, vl (0475, (0))

4. ANSWERING SHORTEST PATH QUERIES

In this section, we will study how to use the TD-G-tree for
route queries by first describing algorithms for supporting
TDSP (Section and TIP (Section 4.2)) queries.

As will be seen later, the above algorithms for TDSP and
TIP will return the shortest time, but only with incomplete
optimal path, such as (v4, vs, v2,v9,v11) (see the red path in
Figure , while the complete path is (v4,vs3,v2, [vo,v1,
vg, (W10, v11). Hence, we will also present techniques for
path recovery to get the complete path (Section |4.3).

4.1 TDSP Query

Before introducing the algorithm for TDSP, let’s describe
an important operation on travel time functions.

Evaluation(f,t). Given a travel time function f and a certain
time point ¢ € T, the function returns the time needed on
function f at time t. It works as follows. First, it retrieves
the linear interpolant f; for time ¢. The result is then cal-

culated as f(t) = fi(t) = LTI — 1) 4 f(t;) (see

more details in Section . Suppose the number of inter-
polation points of f is O(«(T')), which is linear proportional
to T'. By using binary search, the evaluation time overhead
is O(log, o(T)).

TDSP Algorithm. The algorithm for processing a TDSP
query Q@ = (vs,ve,t) is shown in Algorithm 4] which re-
turns the shortest travel time from vs to v. when departing
at t, and the associated incomplete optimal path.
Generally, we categorize TDSP queries into two cases.

(1) vs and v. are in the same leaf node. Let G be
the subgraph w.r.t. this leaf node. Then the shortest travel
time is simply to use the travel-time function at the matrix
cell My [vs,ve], i.e., Q(vs,ve,t) = Mp[vs,ve](t) (lines 2-3),
by using the Evaluation(f,t) function. Note that when both
vs and v. are non-border vertices of G, we adopt local
TD-Dijkstra search to handle it.

(2) vs and v are in different leaf nodes. Let G1 and G,
be different leaf nodes that contain vs and v., respectively.
The basic idea is to search TDSP along the tree-node path
from G to G, and to iteratively revise the travel time along
with the path. More concretely, it works as follows.

[Locating Ancestor.] It finds the least common ancestor
(LCA) of G1 and Gy, denoted by G 4. This forms a unique
tree path G1,...,Ga4,...Gy (lines 5-6).
[Travel Time Initialization.] Initialize shortest travel time
from vs to pivot borders in B(G1) = X(G1)NX (G2) (line 7).
[Iterative Expansion.] Based on the shortest travel time
to B(G1), it expands the shortest travel time to succedent
tree node G2 of G1, i.e., vertices in X (G2), using dynamic
programming (lines 8-12). To be more specific, let X =
X(G1) N X(G2), i.e., the shared vertices set between M,
and Mz (line 10). Then, based on Ms and shared vertices
X, we push the shortest travel time from vs to vy € X(G2)\
X(G1) (line 11). Repeat the above process by assembling
the shortest travel time to vertices in succedent tree-node
matrices, until we get the shortest travel time to vertices in
X (Gk), where leaf node Gy, contains ve. Finally, the shortest
travel time from v, to ve is calculated (lines 12) , along with
the incomplete path, i.e., the part of the optimal path that
consists of vs, ve, and pivot borders in the optimal path.
Note that during expanding shortest travel time to ver-
tices in succedent vertex set X (G;), we only consider ver-
tices in X(G;) N X(Gj41), i.e., hop over to pivot borders
shared by the succedent partition. For example, for leaf node
G1 = leaf(vs), we only consider B(G1) = X(G1) N X (G2).
This optimization safely prunes unpromising borders which
need extra hops before connecting to borders in X (Gj41).

Time Complexity. (1) If v, and v, are within the same
leaf node, it takes at most O(k; - logk; - log a(T")) for local
Dijkstra search. (2) Otherwise, a query scans at most 2 -
log, | |[V|/ki + 1 tree nodes (matrices) from leaf(v,) to root

and then to leaf(v.). In the worst case without pruning, we
expand all O(log, k5 - 1/|V|/Kks*~1) borders in each passing
matrix in the i-th level. The time cost is O(2- 3/, (log, i -
VIV log, a(T))?) = O(log? s - V|- logh a(T)).
Example 13: [TDSP.] Consider a TDSP query Q = (va4,v11,
10) and Figure where leaf(vs) = G, leaf(vi1) = Gs,
LCA(v4,v11) is G1, and the corresponding tree-node path
is Ge, Gg, Gl, GQ, G5, as shown in Figure
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Figure 8: A TDSP Example

Referring to Figure we initialize shortest travel time
to forwarding border vertices in B(Gs), i.e., Ty,4(10) =
Mg [v4,v3](10) = 6. Then we expand shortest travel time to
X (G3), i.e., vs3 and v¢. When we expand to X (G1) with four
borders, where vz and vs in X (G1) are pruned since they are
not in succeeding X (G2) (marked by dashed circles in Fig-
urdg8(a))), i.e., these two borders are not direct pivot vertices
to the destination. Thus, we only expand to v2 and vg, where
7—54”2(10) = min{ﬂle (10) + M [1}371}2] (10 + 7—:4”3(10))7
Toyve (10) + Mi[vs, v2] (10 + 75,,,(10))} = 15, where opti-
mal and non-optimal relaxations are shown in solid lines
and dashed lines in Figure [8(b)l respectively.  Simi-
latly, 75, (10) = min{7s,,, (10) +3 [v3, 09 (1075, (10)),
Togve (10) +M1[ve, v9](10 4 75,4, (10))} = 38.

Repeating the expanding process, when expanding to G2,
we prune borders v; and vz because they are not in suc-
ceeding leaf node Gs. Finally, we get 7,,,,,(10) = 43.
Hence, we have TDSP(v4, v11, 10)=43, and reversely retriev-
ing along solid lines we get the incomplete border path
(v4, v3,v2,v9,v10,v11) (red bold lines in Figur. O

4.2 TIP Query

To answer a TIP query, a straightforward way is to dis-
crete the time interval into multiple points and execute the
TDSP algorithm for every time point ¢ € I. However, this
method is rather expensive since there are too many time
points (even uncountable). To address this issue, we gener-
alize Algorithm@ in the TDSP problem to handle TIP queries
more efficiently. Before introducing the algorithm for TIP,
we first introduce PLF based segmentation. For the other
two operations Com() and Min(), please refer to Section [3.2]

Seg(f,I). To calculate TIP for given time interval I C T, we
need to intersect travel time functions on I, which is called
segmentation. Given a travel time function f and a certain
time interval I C T, we cut out the sub function during
time domain I, i.e., corresponding interpolation points. The
segmentation operation costs O(a(T)).

TIP Algorithm. The algorithm for processing a TIP query
is shown in Algorithm [5] which returns the optimal depar-
ture time t*, its corresponding shortest travel time, and the
incomplete optimal path.
Similarly to TDSP, we also consider two cases.

(1) vs and v are in the same leaf node. In this case, we
can answer this query by directly invoking the Seg() function
(lines 2-3). Note that a non-border pair of (vs,ve) is han-
dled by local TD-Bellman-Ford based method (TD-Dijkstra
based approaches that incur heavy time-expanded queue op-
erations are not efficient on time-interval search).

Algorithm 5: TIP

Input: Q = (vs,ve, I = [ts, te]), and a TD-G-tree T
Output: Best departure time, corresponding shortest travel
time, and its incomplete optimal path
1 Locate leaf(vs) and leaf(v.) by a hash table;
if leaf(vs) = leaf(ve) = G then
| 7osve () = Seg(ML[vs, ve], I) where t € I

w N

4 else

5 Gi=leaf(vs), Gip=leaf(v.), Ga = LCA(G1,Gy) ;

6 Find the tree path G1---Ga -Gy in T;

7 {T0ev, = Sea(Mifvs, vy, t € I),vp € B(G1)};

8 foreach j =1 to k—1do

9 foreach v, € X(G,4+1)\ X(G;) do

10 X =X(G;)NX(Gjt1);

11 foreach v, € X do

12 Toguy = Togvg T COM(Mjt1[va, vp], 75 0 )5
13 Tosvy, = Mln(Tvsvb’Tvgvb)’

14 foreach vy € B(Gk) do

15 Tvsve = Usvb + Com(Mk[vbva]vTvsvb)
16 L Tosve =Min(Tugue, 70, )i
17 t° = alrgmm{rvsvc @}

(2) vs and v are in different leaf nodes. We assem-
ble travel time function 7, ,_  on I by utilizing travel time
matrices along tree-node path from G1 to G (lines 5-13).

We first initialize shortest travel time functions to vertices
in B(G1) = X(G1) N X(G2) (line 7). Then, based on the
shared vertex set (line 10), we assemble STTFs to vertices
in succeeding X (G2), and generalize shortest travel time
function 7;_,, based on all viable Mz[vs,vs] for v, in the
intersection of matrix vertices (line 11-13).

Repeat assembling process to succeeding tree nodes until
we get shortest travel time functions to Gy (lines 8-13).
Finally we get function 7,_,, by minimization with entries
of My, to ve(lines 14-16). Retrieving ¢* from 7., (t),t € I
with shortest travel time during I, we get optimal departure
time t* (line 17).

Time Complexity. Suppose we need at most «(I) linear
pieces to represent related PLFs on interval I. Finding op-
timal departure time costs O(a(I)). Thus, based on time
complexity of TDSP, we get time cost O(log3 s s - |V|-a(1)?).

Example 14: [TIP.] Consider a TIP query Q = (v4,v11,] =
[0,60]). Based on the assembly-based dynamic program-
ming process designed for travel time functions, we first get
Togvr (£),t € [0,24.9] (shown in Equation , where depar-
ture time interval (24.9,60] C I is eliminated, because its
corresponding arrival time interval (60, *) exceeds the time
domain [0, 60] being considered. The corresponding optimal
path for every sub time interval is in Equation [2| whose re-



covery details will be discussed in Section As we can
see, adjacent sub time intervals [11.4,24) and [24, 24.9] from
To,vy, (t) are merged since they correspond to the same op-
timal path (v4,vs, ve,v9,v10,v11). It is not hard to see the
optimal departure time t* = 24, where the corresponding
shortest travel time is 35mins.

0.8t+39.8 ifte[0,4)
. )43 if £ €[4,11.4)
Toaon (0 = Zo63t 1+ 43 it t e [11.4,24) (1)
0.1t + 35 if t € [24,24.9]
(va,v3,v2,v1,v9,v10,V11) if t €[0,4)
p:4v11(t) = ¢ (v4,v3,v2,v0,v1,v9,v10,v11) iftE [4, 11.4) (2)

if ¢t € [11.4,24.9]
o

(v4,v3,v6,v9,v10,V11)

4.3 Path Recovery

As discussed earlier in this section, algorithms for TDSP
and TIP only return an incomplete optimal path. This is
because that when computing the shortest path in those
algorithms, we “hop over” detailed sub path between adja-
cent pivot borders. Next we will discuss how to recover the
complete shortest path from the incomplete one.

4.3.1 Matrix Entry Path Recovery

To support path recovery, during calculating travel time
matrix entries with TD-Floyd (see Algorithm , we record
the intermediate vertex information. Specifically, when
the algorithm relaxes a linear function piece f of travel-
time function M;[vs,ve] with M;[vs,vi] and M;[vg, ve], if
f is updated, it records the intermediate vertex as vy for
f. We use Inter(M;vs,ve]),t) to denote the intermediate
vertex at ¢.

Path-Recovery Algorithm. For M;[vs,ve](t),t € T, by
retrieving the intermediate vertex information recursively
we get the detailed optimal path from vs to v. departing
at t. Algorithm [6] shows the pseudo-code. Based on the
intermediate vertex conditions, there are following cases.

1. vs and ve are non-border vertices (lines 1-2). vs,ve
are local vertices in G, where we know 7, ,, (¢) dur-
ing “hopping over” its sub-path. We adopt travel time
bounded TD-Dijkstra to retrieve the detailed local
path, e.g., from vip to v1i1.

2. Directly connected (lines 5-6). The optimal path
from vs to ve is connected directly by an edge, e.g.,
My [v2,v1] is connected by ey,,, during [0, 25] (see Fig-
ure .

3. Connected via v, € X(G;) (lines 7-8). Note that
intermediate vertex v, is also maintained associ-
ated to M;. We recover connection information for
M;[vs,v](t) and M;[ve, vel(t + Mlvs,vz](t)) recur-
sively, e.g., Ma[vz2,v1](t) is connected via vy during
[25,60] (see Figure [3(b)).

4. Connected via an inside vertex in V; \ X (G;) (lines 9-
10). That is, intermediate vertex v, is maintained
by a child-node matrix M., i.e., we synchronize
M;[vs,ve] = Mc[vs,ve] in  Approximate: Bottom-up
Local-optimal, e.g., Ma[v2,v1] = Ma[ve,v1], where in-
termediate vertex is vo ¢ X (G2) during [25, 60].

5. Connected via an outside vertex in V \ V; (lines 11-
12). Intermediate vertex v, is maintained by parent-
node matrix My, i.e., we update M;[vs,ve] =
My[vs,ve] during Precise: Top-Down Global-optimal,

Algorithm 6: PREC(vs, ve, t, G;)

Input: vs,ve € X(G;), dpt. time ¢, and tree node G,
Output: A full path from vs to ve
if leaf(vs) = G; and vs,ve ¢ B(G;) then

L return TD-Dijkstra(vs, ve,t); // T,

vg,Ve

[V

(t) local bounded

38 marker = Inter (M;[vsve],t);

4 if marker = v, € X(G;) then

5 if v, = vs then

6 | return @;

7 te =t + M;[vs, vz](t);

8 return <PREC(vs,vq,t, Gi), vz, PREC(Vz,ve, ta, Gi)>;

9 else if marker = Gy then // parent node Gy
10 L return PREC(vs, ve, t, G§);

11 else if marker = G. then // child node G.
12 L return PREC(vs, ve, t, G¢);

e.g., Ms[vs,ve] = Mi[vs, vs], with inter-vertex vo ¢ V3
during [0, 15].

Note that different departure time points during the same
linear function segment has the same intermediate vertex.
Hence, we only need to maintain one intermediate vertex
information per linear segment for all matrix entries.

For TDSP query Q(vs,ve,t) (Section [.1]), we need to re-
cover the optimal path corresponding to departure time ¢.
For TIP query Q(vs,ve,I), what we concern is the optimal
departure time ¢* within I and its corresponding optimal
path. Hence, we only discuss the path-recovery algorithm
for TDSP queries, which can also support TIP queries.

4.3.2  Chronological Path-Recovery Process

For a TDSP query Q(vs, ve, ), based on the shortest travel
time, we retrieve the incomplete optimal path (called border
path) (vs,b1,b2,bs, -, bm, ve) corresponds to the tree-node
path leaf(vs) = G1,---,LCA,---, Gy, = leaf(ve) (see Exam-
ple . Based on the border path and corresponding short-
est travel time passing these borders, we recover the detailed
inter-vertices between each adjacent vertex pair in the bor-
der path chronologically as shown in Algorithm[6] More con-
cretely, for each adjacent pair (b;—1, b;) passing from G;_1 to
G, we use t. to represent the current time arriving at b;_1.
Then we recover the detailed path of M;[b;—1, b;] at ¢ through
Algorithm [} As mentioned in Section [3.1} non-border ver-
tex pairs (vs, v;) in leaf-node matrices are not maintained for
space consideration. Alternatively, we compute the optimal
sub-path via (v;,v;) by local TD-Dijkstra search.

Example 15: [Path Recovery.] Consider a TDSP query dis-
cussed in Example Q(v4,v11,10). Reversely retrieving
the shortest travel time along the way based on shortest
travel time 43mins (reversely along bold solid lines in Fig-
ure|3(b)]), we get the optimal border path (v4, vs, v2, vg, v11).

Referring to the border path shown in Figure with
bold solid lines, we see the detailed path between each two
adjacent elements in the border path are not recovered, e.g.,
the subpath between vz, vg, and the sub path between vy,
v11 (dashed lines in Figure .

Then, referring to detailed path recovery process in Fig-
ure let’s focus on adjacent pair (v2, v9) on tree node G2
with departure time ¢t = 31. Checking Inter(Ms[va, vol,t =
31) (line 3), vz and vy are connected via v; in current node
(line 4, circled vertex with star superscript in Figure .
We get arrival time ¢, = t+Ma[vz, v1](31) = 43 at vy (line 7).
Recursively, we process (v2,v1) and (v1,v9) (line 8), where
(v2,v1) are connected in G2’s child node G4 (line 11, and the
down arrow from M> to My in Figure . Similarly, to
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Figure 9: Path recovery of Q(v4,v11,10)

Table 3: Datasets

Dataset | #Vertices | #Edges
CAL (California) 21,048 43,386
SF (San Francisco) 174,956 446,002
COL (Colorado) 435,666 1,057,066
FLA (Florida) 1,070,376 | 2,712,798
W (Western USA) 6,262,104 | 15,248,146

process non-border pair (vig,v11), we first get shortest travel
time bound 7, ., (50) = 7, 4, (10) — 75, ,,,(10) = 3.
With TD-Dijkstra local search bounded by 3mins we get
v19 and v11 are connected directly (line 2). O

Space and Time Complexity. Maintaining Inter for

a PLF costs O(a(T)). As there are O(logmf M og2 k-

Kl
|V|) matrix entires (Section [3.2)), the space complexity is
O(log,{f Wl Jog2 ks - |[V]-a(T)). Consider an adjacent pair

K
(vs, Ve) onltree node G; with departure time t. at vs, check-
ing M;[vs,ve] for t. costs O(logy a(T)). Suppose there
are N, inter-vertices to be recovered, travel time bounded
TD-Dijkstra local sub-path search costs O(Cl,), a k; related

constant, the overall time cost is O(Np, - Cy, - log, o(T)).

S. EXPERIMENTS

Datasets: We used five real-world road-network
datasets EHﬂ, which were directed graphs. The num-
bers of vertices in the datasets were varied from 20,000 to
6,262,104. All the time-dependent weight functions (PLFs)
were generated based on real traffic patterns that were
gotten from real taxi trajectories [18]. We set the time
domain as a whole day, i.e., 86400 seconds. The average
number of interpolation points in the time-dependent
weight functions for each edge was 3. The statistics of these
datasets were shown in Table

Setting: For TD-G-tree, we set fanout xy to 4 and the
maximal number x; of vertices in a leaf node is considered in
Section[5.1} Original graph inputs and the TD-G-tree index
are memory resident throughout the following experiments.

TDSP. (1) To evaluate the efficiency of processing a TDSP
query, we randomly chose 1,000 pairs of vertices for each
dataset. For each pair of vertices, we randomly chose 10
departure time, and thus we had 10,000 TDSP queries for
each dataset. (2) To evaluate the scalability of TDSP, we
also varied the number of hops from the source to the desti-
nation. (3) To further analyze query efficiency, we evaluated
the number of visited (labeled) vertices during TDSP query
processing, we recorded the number of visited vertices for
queries in (1) and (2).

*https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
Shttp://www.dis.uniromal.it/challenge9/download.shtml

TIP. (1) To evaluate the performance of a TIP query, we ran-
domly chose 1,000 random pairs of vertices for each dataset
and 10 time intervals I = [ts,te] C T, where |t. — ts| was
uniformly selected from 0.1|T|, 0.2|T|, ---, |T'| (|T|= 86400
seconds). (2) To evaluate the influence of time-interval
length on TIP queries, we varied time interval size from 10
to 10,000 seconds, and for each time interval we generated
1,000 queries randomly.

Update. To evaluate the update efficiency of TD-G-tree,
we randomly chose 0.1%, 1%, 10% of edges, and we ran-
domly decreased the speed of high-speed edges, and in-
creased the speed of low-speed edges.

Comparisons. For TDSP queries, we compared our
TD-G-tree with TDALT [19] (A* with landmarks and trian-
gle inequalities), TCH [2] (time-dependent version of contrac-
tion hierarchy which we implemented based on TCH [13] and
CH [2|) and TD-Dijkstra, which extended the Dijkstra al-
gorithm to support time-dependent road networks. For TIP
queries, we compared with TCH and TD2S |10, which was
a Dijkstra-based method. TD2S avoided redundant vertices
relaxations for every time point, and guaranteed that the
shortest path of a vertex can be found if other vertices can-
not be arrived before the current vertex.

All the algorithms were implemented in C++. All ex-
periments were conducted on a Linux computer with Intel
2.20GHz CPU and 128GB memory.

5.1 Evaluation on Parameters: «; and &,

We evaluated the impact of x; (partition fanout) and
k¢ (the maximum number of vertices in each leaf node) of
TD-G-tree by investigating the number of borders gener-
ated by the hierarchical partitioning, the index size, the in-
dex building time and the TDSP query time. We varied xy
in {2,4,6,8} and x; in {32,64, 128,256}. Figureshowed
the results. We made three observations. (1) Our method
achieved better results with medium x; = 4 or 6. With the
increasing of partition fanout sy, the border number, index
size, build time and query time decreased first and then in-
creased. It is because increasing fanout will increase tree
nodes number per level and reduce tree height, but larger
fanout will generate more borders which lead to more matrix
entries. (2) With the increase of k;, the number of borders
decreased as hierarchical partitioning stopped earlier and
there are less partitions. But index size and build time in-
creased for C AL, since bigger x; leads to more borders per
leaf node Gp, i.e., more square-level matrix entries in My,
which lead to longer building time. (3) Our method achieved
the best results when x; = 64 for optimizing query time, be-
cause larger k; lead to lower tree height with lesser searching
tree nodes, but it caused longer local Dijkstra search time
on query pairs within the same leaf node. To balance the
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number of tree nodes per level and corresponding matrix
size during partitioning, we set Ky = 4. To balance global
tree-node level and local Dijkstra searching, we set k; to
64(CAL), 64(SF),128(COL), 256(FLA) and 256(W).

5.2 Evaluation on Query Efficiency

Evaluation on TDSP Search: We evaluated the TDSP query
efficiency and compared TD-G-tree with TDALT, TCH and ba-
sic TD-Dijkstra. Figure[l1| showed the results.

We first evaluated the performance by randomly choosing
a pair of vertices from each dataset and uniformly chose the
departure time in [0, 86400]. Figure @ showed the perfor-
mance. We could see that our method outperformed exist-
ing methods by 1-2 orders of magnitude. This was because
Dijkstra was rather expensive to find the shortest paths by
expanding the vertices in the graph, and without indexed
shortest travel time functions between special border ver-
tices. Although TDALT eliminated many vertices through
lightweight indexed heuristic landmarks, it still needs to tra-
verse along the shortest path, which took quite a long time.
TCH also took much longer time than TD-G-tree, because
TD-G-tree used the effective index to search the shortest
path that greatly reduced visited vertices. Besides, TDSP
query time grew very slowly as the dataset became larger,
e.g., the query time increased from 2.6ms (FLA with 1.1
million vertices) to 4.1ms (W with 6.2 million vertices). Sec-

ond, we varied the number of hops from the sources to the
destinations on F'LA. Figure showed the results. By
varying the number of hops on different datasets, TDALT, TCH
and TD-Dijkstra had worse performance while TD-G-tree
showed more stable performance. This was because com-
pared techniques required to traverse many more vertices
while TD-G-tree used the index structure to skip a large
number of unnecessary vertices. Third, we recorded visited
vertices for random queries and hops by varying queries dis-
cussed above. Figures and showed the numbers.
Compared with TDALT, TCH and TD-Dijkstra which need to
search many vertices, TD-G-tree based shortest travel time
querying only need to settle a few pivot borders, e.g., only
several hundreds of vertices on W.

Evaluation on TIP Search: We evaluated the TIP
query efficiency and compared TD-G-tree with TCH and
TD2S [10].

First, we tested the performance by randomly choosing
query vertex pairs and randomly choosing time intervals in
[0,86400]. Figure showed the results. TD-G-tree was
1-2 orders of magnitude faster than TCH, and three orders of
magnitude faster than TD2S. This was because Dijkstra-like
search for TD2S and label correcting approach for TCH were
rather expensive for large interval based TIP queries. More-
over, with the increase of the dataset, the gap between them
became larger (and TD2S could not support large datasets).
Second, we fixed the query vertex pairs and varied the TIP
query time interval length on dataset FLA. Figures
showed the results. We could find that TIP outperformed the
baselines by more than one order of magnitude. Moreover,
with the increase of the query time interval length, TD2S
took much more time, because it required to search longer
paths while TD-G-tree was more stable, as TD-G-tree has
indexed the whole time domain and may segment the needed
intervals.

Evaluation on Path Recovery. We evaluated our path
recovery scheme on random queries of TDSP and TIP dis-
cussed in Section and compared with TCH (as shown in
Figure . Our method still achieved higher performance
when combined with path recovery, because our method can
efficiently retrieve the shortest paths based on pivot borders.

5.3 TD-G-Tree Construction and Update

Index Building: We evaluated the time and space over-
head for indexing, and we compared TD-G-tree with TCH.
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Figure [14(a){14(b)| illustrated the index building time and

the index size. Note that, the index of TD-G-tree included
tree structure, travel time matrices and their intermediate
vertices, hash table that mapped vertices to the correspond-
ing leaf nodes. TD-G-tree achieved similar building time
with TCH, where TD-G-tree generated shortest travel time
matrices, and TCH contracted the vertices according to time
varying importance. TD-G-tree had larger index size than
TCH, as TD-G-tree indexed more matrices for borders. For-
tunately, the index sizes are acceptable for all road networks.

Index Update: Existing work cannot support the index
update for TDRNs. Here we evaluated TD-G-tree update effi-
ciency. We varied the update ratio and the result was shown
in Figure [14(c)i14(d)l As we can see from the results, vary-
ing part of the edge weights being updated, i.e., from 0.1%,
1% to 10% of total number of edges, only no more than 20%
of tree nodes (travel time matrices) were influenced by the
update of 0.1 — 1% of edges, and the update time overhead
was rather small, i.e., no more than 15% for the building
time on 0.1% of edges’ update. Besides, with the increase
of the update ratio, the update time increased heavily. But
in real traffic, there would not be many updated edges and
our method was acceptable in real scenarios.

6. RELATED WORK

Many efficient shortest path algorithms have been studied
for static road networks [1}, 9} [13, 38 136, |31} [37, |32] [20} [33].
We now consider studies on shortest path problems in time-
dependent road networks, i.e., TDSP problems (see |26] for
an introduction, and |14} 24] for an overview).

TDSP. TDSP was first proposed in [4] by Cooke and Helsey
with a recursion formula. Dreyfus|l1] generalized Dijk-
stra to time-dependent graphs with implicit first-in-first-out
(FIFO) property (i.e., not-overtaking) assumption. Kauf-
man and Smith [23] proved TDSP is polynomially solvable
in FIFO networks. Non-FIF0 networks are proved to be NP-
hard by Orda and Rom [30]. Fortunately, the transportation
road networks satisfy the FIFO property, which guarantees
the problems can be solved in a polynomial time. Thus,
we mainly focus on graphs with the FIFO property. Note
that our techniques can be extended to solve non-FIFO time-
dependent graphs if waiting at vertices is permitted (i.e.,
polynomial solvable).

Generalized Classic Techniques. Orda and Rom [30]
extended label-correcting method to time-dependent scenar-
ios, with a time complexity of O(Fmax|V||E|), where Fmax is
the maximum output size for all possible destination nodes.
Ding et al. |[10] and Dehne et al. |5| presented two label-
setting Dijkstra like algorithms, which has time overhead
O((|V)log|V|+|E|)a(T)), where o(T) is linear pieces needed
to represent PLFs on time domain 7.

A*-based Algorithms. The work [21] extended A* algo-
rithm to time-dependent road networks, where expanding
all possible paths may incur exponential running time in
the worst case. A™ with landmarks (ALT [15]) and bidirec-
tional search scheme in A* [16] were combined to handle
time-dependent scenarios in [8} 29]. Two-level hierarchical
approach was combined to bidirectional ALT to obtain time-
dependent core ALT (TDCALT) in [7].

Hierarchical Techniques. SHARC [3] and CH |13| were two
hierarchical speed-up techniques in static road networks,
which were augmented to time-dependent road networks as
TD-SHARC [6] and TCH [2] respectively. The main idea behind
TCH and TD-SHARC is to remove unimportant vertices and
generate shortcuts between remaining important vertices.

Variants of Shortest Path Querying on TDRNs. There
are also other variant works, either on TDRN modeling or op-
timizing targets. [12] developed a TDRN dataset using sparse
trajectories, which also showed TDSP querying is more de-
sirable than static shortest path querying. |19} 28] turned
deterministic TDRNs models into probabilistic models with
edge travel time assigned by probability distribution func-
tions, based on which they proposed and handled proba-
bility based queries. [17] considered TDSP problems under
constraints such as greenhouse gas emissions and conges-
tion costs by using TD-Dijkstra to calculate shortest paths.
R3 [34] discretized continuous TDRNs into static snapshots
under different traffic and recommend routes by integrat-
ing these static road networks together. [35] studied time-
dependent route planning problems on public transportation
networks, e.g., routing among bus stops based on accessible
road segments. [25) [27] studied route scheduling that min-
imize on-road time on TDRNs by allowing parking on inter-
mediate vertices.

7. CONCLUSION

We have studied the problem of answering shortest path
queries on TDRNs. We proposed a balanced tree-structured
index, called TD-G-tree, to support both shortest path
queries and time interval planing queries. We used hierar-
chical graph partitioning to split the road network into hi-
erarchical partitions and constructed a balanced tree index.
We further proposed effective algorithms to support the two
types of queries. Experiments showed that our method sig-
nificantly outperformed existing studies, e.g., about 8 times
faster on TDSP and 10 times faster on TIP queries. For fu-
ture work, we aim to support more types of TD-G-tree-based
queries, e.g., k-nearest neighbors query (k-NN) for points of
interests (POls). We want to explore more precise methods
for real-time traffic flow prediction, which helps TD-G-tree
based systems to better handle traffic emergencies.
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